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Abstract − There are a number of algorithms for 
interactively modeling deformable objects, such as soft 
human tissues. Because of the desire for real-time 
performance, approximations are made to quickly 
calculate deformations. This paper proposes accuracy 
metrics and benchmarks to allow a systematic 
comparison of simulation algorithms for deformable 
objects in 2D and 3D. We implement and compare the 
computed deformations of several algorithms based on 
the finite element method (FEM) that rely on the 
approximations of explicit time integration, mass 
lumping, or quasi-static motion. We also compare 
different material properties and show that some 
algorithms limit the breadth of materials that can be 
simulated. 

I. INTRODUCTION 

Many algorithms have been proposed for real-time 
simulation of deformable objects, each making its own 
tradeoff between speed and realism. In graphics 
applications, such as cloth animation, it is only necessary 
for the deformation to “look right.” The code provides 
tweakable parameters to an animator in order to produce 
the desired artistic effect. In such cases, numeric realism 
metrics are not relevant since visually pleasing results are 
the goal. However, for applications such as human 
surgery simulation, a more stringent and quantifiable level 
of realism is desired. 

Among currently available approaches, the finite 
element method (FEM) yields the most realistic results 
because it is based on the equations of continuum 
mechanics. Unfortunately, execution speed is a major 
concern when running FEM simulations because of the 
large computational cost required to solve a system of 
equations for each simulation frame. Algorithms designed 
to solve these systems make varying levels of 
approximations in order to decrease computation time. To 
our knowledge, no one has experimentally compared the 
algorithms to determine the loss of realism that results 
from the approximations when simulating soft tissues. 

We propose accuracy metrics for algorithms that 
calculate deformations in section III. These general 
metrics can be applied to any system that models 
deformable objects. Test cases are presented in section IV 
for use as benchmarks. FEM solver algorithms that we 
test are defined in section V and the results of our 

experiments are presented in section VI. 

II. RELATED WORK 

Modeling deformable objects has a long history in 
mechanical engineering, including the development of 
FEM in the 1950’s [17]. Most of this work has focused on 
modeling small deformations of stiff structural materials.  

More recently, offline animation and real-time 
simulation of deformable objects has entered the realm of 
computer graphics, as described in Gibson and Mirtich 
[6]. Mass-spring models have been common for 
simulating a diverse array of objects, including human 
tissues such as muscles [14] and blood vessels [3]. Mass-
spring models are relatively easy to implement. However, 
they not only discretize the object into a set of finite point 
masses, they also discretize the equations of motion. 

Unlike the mass-spring model, the finite element 
method is based on the equations of continuum 
mechanics. The feasibility and potential of this approach 
for computer animation was demonstrated by Terzopolous 
et. al. in 1987 [13]. Since, then, FEM has been applied to 
numerous graphical applications, including facial surgery 
[8] and fractures of rigid objects [10]. 

Real-time performance for surgery simulation of the 
human liver using FEM was achieved by Stéphane Cotin 
[4]. They modeled tissue as a linearly elastic material and 
allowed only small quasi-static deformations. In addition, 
their method requires a large preprocessing step, which is 
not appropriate for applications such as real-time planning 
of surgical procedures. 

Another physically based method by James and Pai [7] 
that achieved real-time performance relies on the 
boundary element method (BEM), which reduces the 
dimensionality of the problem by considering only the 
surface of the object. However, this simplification may 
not be well suited for an application such as surgery 
simulation because it cannot properly handle non-
homogenous solid materials or forces applied in the 
interior of the object. 

Modeling large deformations requires quadratic strain, 
which generates a nonlinear system of differential 
equations. Recent work has achieved real-time 
performance for large deformations using reasonably 
sized meshes, including Yan Zhuang [16] and Picinbono 
et. al. [11]. Zhuang’s algorithm uses two key 
approximations: mass lumping and a graded mesh. These 
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techniques are effective to achieve real-time performance 
but may not be suitable for some applications because of a 
loss of realism. 'u

e
=nE  (1) 

This error is mathematically simple to calculate and 
manipulate, but is not easy to visualize geometrically. 

Numerous publications in the FEM literature attempt to 
measure the a posteriori error, as surveyed in [17] and [1]. 
One such metric, the relative energy norm error, is used in 
this paper as described in section III. However, most of 
these error metrics are geared toward applications such as 
mesh refinement or shape function analysis rather than the 
visual or geometric accuracy of the deformation. 

B. Surface Error Metric 

The surface error metric calculates the error of the 
boundary of a deformed object. Let the set operator ⊕ 
represent the symmetric difference (also known as the 
xor) operator. At time t, the surface error of Mt’ with 
respect to Mt is: 

Unfortunately, each solving algorithm for simulating 
deformable objects has been demonstrated using its own 
set of test cases, making it difficult to compare the various 
approximation techniques. One example test case, the 
bending rod, has been used previously in the literature, 
including [16], [11], and [5]. However, as with other tests, 
this test has been implemented with different material 
properties and settings. This paper provides a consistent 
method to compare algorithms for simulating deformable 
objects. 
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Graphically, this error in 2D is visualized by 
superimposing the deformed objects and determining the 
symmetric difference of their areas, as shown in Figure 1. 
The error metric generalizes to 3D by using volumes 
instead of areas. 

 

III. ERROR METRICS 

This paper describes three major classes of errors in the 
calculation of deformations: energy, surface, and interior 
error. The relative energy norm is commonly used in the 
FEM literature, but has no intuitive geometric meaning. 
The surface error metric is useful for applications such as 
animation where only the exterior shape of the object is 
visible. The interior error metric considers the error of 
both exterior and interior points of an object. 

Figure 1: The dark area of object M⊕M’ is the symmetric difference of 
objects M and M’. 

C. Interior Error Metric 

The interior error metric calculates the error of the 
displacements of all points that compose a deformed 
object. Let p0=(x, y) be a point in Int(M0). Let p and p’ be 
the new location of p0 in Mt and Mt’, respectively, after a 
deformation. Let d(a, b) be a distance metric between 
points a and b.  

Let M0 be the initial mesh of an object. For a particular 
time t, let Mt represent the correctly deformed mesh of the 
object based on physical laws. In this paper, we assume 
all material properties of the object are known, so Mt is 
unique. Let Mt’ represent the deformed mesh calculated 
by an approximate numerical method. Let Int(Mt) be a set 
containing all the points in the interior of meshed object 
Mt. Let |S| represent the area spanned by the points in set 
S. 
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The interior error is normalized by the square root of the 
area, or cube root of the volume, so that this 
normalization constant has dimension of length. Since the 
Euclidean distance metric is appropriate in this case, the 
error formula for 2D becomes: 

A. Relative Energy Norm Error Metric 

The relative energy norm error metric is commonly 
used in the FEM literature [17]. Let u be a vector 
containing the displacement of each node at time t. The 
energy norm for the error in the displacement is given by: ( ) ( )∫∫

∈
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Unlike the relative energy norm, which sums the error 

of each DOF independently, the interior error metric sums 
the error of each point’s displacement in 2D or 3D. 

The energy norm of the displacement is given by: 

''' uuu T=  To implement this error metric efficiently, we convert 
the integral to a summation by selecting the location of 
the nodes of the mesh M0 as a finite set of points that 
represent Int(M0). This is valid since values for the points 

Hence, the relative energy norm error En is then defined 
as: 
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in the interior of the elements in the mesh are computed 
as linear interpolations of values at the element’s nodes. 

Material Property Value 
Young’s Modulus 60,000 Pa 
Poisson Ratio 0.495 
Height 1 m 
Width 1 m 
Density 1140 kg/m3 
Rayleigh Damping α 1.0 
Rayleigh Damping β 0.1 

IV. BENCHMARKS 

We propose two benchmarks: a 2D block being deformed 
by a needle and a 3D deformable rod fixed at one edge 
under the influence of gravity. These test cases can 
demonstrate how effectively the solving algorithms 
handle statics, dynamics, and deformations of different 
sizes. 

Table 2: Material Properties #2 (MP2). These properties are based on 
measured data for human prostate gland tissue [ 9, 12]. A. 2D Block and Needle Benchmark 

For the test, the needle is initially positioned on the 
right side of the block at the center of the non-fixed edge. 
At time 0, the needle begins moving at a speed of 0.08m/s 
to the left for 2 seconds, and then stops. A fixed time-step 
of h=1/30 seconds is used. 

The first test simulates a 2D block of soft elastic 
material being poked from one side by a needle. Three 
sides of the square block are fixed. The displacement 
applied at a point causes a deformation, as shown in 
Figure 2. This test is relevant because it is the first step to 
simulating more complicated procedures, such as piercing 
soft tissue with a needle during surgery simulation. B. 3D Bending Rod Test Case 

The second test involves simulating a 3D rod with a 
square cross-section. The rod is composed of a soft elastic 
material and is fixed at one end. The rod is subject to 
gravity in a viscous medium causing it to bend as shown 
in Figure 3. 

 

 

Figure 2: Block and needle benchmark. The top, bottom, and left sides 
are fixed. A needle pokes the block on the right. 

The test is performed on two different materials 
defined by MP1 in Table 1 and MP2 in Table 2. MP2 is 
based on real data for human prostate glandular tissue as 
specified in [9] and [12]. The damping constants are set to 
the minimum possible values that allow convergence for 
all the solving algorithms being tested, with exceptions 
covered in section VI. 

Figure 3: A 2D projection of the bending rod test case. 

The material properties of the rod are described in 
Table 3. Initially, the rod is unaffected by gravity. At time 
0, the force due to gravity is turned “on,” with a constant 
of acceleration of 5 cm/s2. A fixed time-step of h=1/30 
seconds is used. 

  
Material Property Value 
Young’s Modulus 200 Pa 
Poisson Ratio 0.47 
Height 1 m 
Width 1 m 
Density 2000 kg/m3 
Rayleigh Damping α 1.0 
Rayleigh Damping β 0.1 

Material Property Value 
Young’s Modulus 7000 Pa 
Poisson Ratio 0.2 
Height 0.25 m 
Width 0.5 m 
Depth 0.25 m 
Density 10000 kg/m3 
Rayleigh Damping α 1.0 
Rayleigh Damping β 0.1 Table 1: Material Properties #1 (MP1). 

Table 3: Material Properties #3 (MP3). 
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B. Explicit Time Integration and Mass Lumping V. COMPUTING DEFORMATIONS 
Because of the linear system that must be solved at 

every time-step, the implicit integration formulation 
above can only achieve real-time interactive performance 
for small meshes. An alternative approach is to set the 
Newmark method parameters to β=0 and γ=0.5 to obtain 
the explicit system: 

The algorithms tested in this paper use the finite 
element method (FEM) to compute soft tissue 
deformations. We assume the material being modeled is 
linearly elastic and only small deformations will result. 
The soft tissue is defined by a mesh composed of m 
elements created using n total nodes, each with e degrees 
of freedom, where e=2 for 2D or e=3 for 3D. The FEM 
problem is defined by a system of d=en linear differential 
equations: 

ui+1 = ui + h vi + (1/2) h2 ai 

(M + h C/2) ai+1 = fi+1 – K ui+1– C (vi + h ai/2) 

M ai + C vi + K ui = fi (1) vi+1 = vi + (1/2) h (ai + ai+1) 

This system is explicit since the next displacement 
vector depends only on current information. 
Unfortunately, this system requires solving a linear 
system for acceleration. However, we can use mass 
lumping, which approximates the continuous material as a 
particle system with mass lumped at the nodes, to 
diagonalize the M and C matrices. This decouples the 
system of equations into a set of algebraic equations that 
can quickly be solved [16, 11]. 

where M is the mass matrix, C is the damping matrix, K 
is the stiffness matrix, fi is the external force vector, ai is 
the nodal acceleration vector, vi is the nodal velocity 
vector, and ui is the nodal displacement vector at time-
step i [17]. 

The vector fi represents the forces exerted on the tissue. 
The matrices M, C, and K are properties of the material 
being modeled and are constructed by superimposing the 
element mass, damping, and stiffness matrices [17]. The 
time integration techniques described below are used to 
solve for ai, vi, and ui for each time-step i. 

C. Quasi-Static Time-steps 

With quasi-static time-steps, the deformation of the 
model at time time-step i+1 does not depend on any past 
history. 

A. Implicit Time Integration 

To integrate the differential system (1) over time, we 
use the Newmark method [15], which translates the 
differential system into a linear system of equations. The 
method includes parameters β and γ that determine the 
properties of the resulting linear systems. Let h be the 
time-step duration. Displacement and velocity for the next 
time-step are approximated as: 

K ui+1 = fi+1 (2) 

The quasi-static form of the problem finds the steady 
state solution ui+1, if it exists. The dynamic formulation 
should converge to this solution if the applied force is not 
modified, damping is present, and the system is stable.  

This method implicitly assumes that acceleration and 
velocity are negligible between time-steps and visco-
elastic material behavior cannot be modeled. However, 
very fast performance can be achieved using this quasi-
static time-steps. But by taking advantage of the linearity 
of the system as well as the superposition principle, [4] 
achieved interactivity for very large meshes with this 
method. 

ui+1 = ui + h vi + (1-β) (h2/2) ai + β (h2/2) ai+1 

vi+1 = vi + (1-γ) h ai + γ h ai+1 

When 2β ≥ γ ≥ ½, the time integration is 
unconditionally stable. The error due to the numeric 
integration is O(h2) when γ=1/2, and O(h) otherwise [15]. 

By setting the Newmark method parameters β=0.5 and 
γ=0.5, we obtain the implicit system: 

 

(M + h C/2 + h2 K/4) ai+1 =  
fi+1 – (h C/2 + h2 K/4) ai – (C + h K) vi – K ui 

vi+1 = vi + (1/2) h (ai + ai+1) 

ui+1 = ui + h vi+1 + (1/4) h2 (ai + ai+1) 

This is an implicit system since the next position is 
determined using the next velocity and acceleration. 
However, a linear system must be solved to obtain the 
acceleration vector. 

Figure 4: A summary of the relative speed and relationships between the 
FEM solving algorithms implemented and tested in this paper. 
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VI. NUMERICAL EXPERIMENT RESULTS 
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We implemented the FEM algorithms to compute 
deformations for linear elastic materials. The objects 
being simulated were defined using meshes composed of 
2D quadrilateral or 3D hexahedral elements. We 
implemented the Gauss-Seidel iteration method to solve 
linear systems for the FEM solvers. The system was 
implemented in C++ and all tests were completed on a 
750MHz PC with 128MB RAM. 

The relative energy norm, surface, and interior error 
metrics were implemented to test the FEM solver methods 
described above. The correctly deformed mesh M was 
selected to be the deformation calculated by implicit 
integration without mass lumping. This solver algorithm 
does not rely on any major approximations so it is most 
representative of the real-world outcome. Since the goal 
here is not to verify the correctness of the FEM 
formulation but rather the relative merits of computational 
speed-up algorithms, this is deemed an appropriate 
choice. 

Figure 6: Surface error for the block and needle benchmark with MP1. A. Direct Comparison of Solving Algorithms 
The multiple peaks in Figure 6 after 5 seconds 

represent the oscillations of the soft elastic material as it 
settles into its steady state configuration. These 
oscillations occur because the system is not perfectly 
damped. 

The block and needle test results for MP1 are shown 
for the relative energy norm error in Figure 5, the surface 
error in Figure 6, and the interior error in Figure 7 and 
Figure 8. All graphs assume that implicit integration 
determines the correct deformation. In all cases, the same 
general trend holds. Explicit integration with no lumping 
is the best approximation followed by the mass lumping 
methods. Quasi-static consistently performs worst. 
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Figure 7: Interior error for the block and needle benchmark with MP1. 

Figure 5: Relative energy norm error for the block and needle test with 
MP1. 
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Figure 8: Interior error for the block and needle benchmark with MP1. 
Quasi-static performs significantly worse than explicit with mass 
lumping. 

Figure 10: Interior error for the bending rod benchmark. 

Figure 9 and Figure 11 show the bending rod 
benchmark results for the interior error metric. The results 
for this test follow the same general trends as with the 
block poking test case. Since quasi-static reaches its 
steady-state configuration after the first time-step, its error 
steadily decreases as time passes and the solutions of the 
transient integration models approach steady state. 

Quasi-static time-steps performed worst in all cases, 
with the error being off the chart for most of the 
simulations.  This error is high because the material being 
modeled is visco-elastic, so the assumptions of quasi-
static time-steps from section Error! Bookmark not 
defined. are not satisfied. 

In the bending rod test, the elastic rod bends and 
overshoots the steady-state configuration before settling 
into the final configuration. Since the rod is not perfectly 
damped, it oscillates around the steady-state 
configuration. In particular, at 4.2 seconds, the rod drops 
below the steady-state configuration, which explains why 
the error of the quasi-static algorithm approaches 0 at that 
time. 

Explicit integration with mass lumping performed next 
worst. This is most likely because the equations of 
continuum mechanics are modified. Also, the time 
integration scheme decoupled the system of equations, 
causing information to travel slowly through the object. 
The artificially slow rate of information transfer causes 
the dynamics of this simulation to be inaccurate. Also 
interesting to note is that the explicit integration with 
mass lumping error is roughly the sum of the error due 
only to mass lumping or only to explicit integration. B. Solving Algorithms and Material Properties 

The material properties have a significant impact on 
the solving algorithms. MP1 was set so that all the solving 
algorithms covered in this paper would converge. 
However, increasing the stiffness or incompressibility of 
MP1 causes the explicit time integration methods to fail 
to converge. The systems will perpetually gain energy 
until the node displacements diverge to infinity.  

The experiment confirms that all the time integration 
schemes converge to the same final solution, which is the 
static solution that is independent of damping or mass 
distribution. 

0.E+00

1.E-04

2.E-04

3.E-04

4.E-04

5.E-04

6.E-04

7.E-04

0 1 2 3 4 5 6 7 8
Elapsed Simulation Time (seconds)

In
te

rio
r E

rr
or

Explicit With Lumping Explicit No Lumping Implicit With Lumping  

This reveals a well-known problem: explicit 
integration is unstable for large time-steps when 
simulating stiff materials [2]. The maximum stable time-
step length is inversely proportional to the natural 
frequency of the dynamic system (1), which increases for 
stiffer materials. Therefore, using explicit integration with 
MP2 is impossible for a time-step of h=1/30 seconds. For 
stable convergence with any reasonable damping, the 
time-step h must be reduced to less than 10-6 seconds, 
which makes real-time performance impossible on any 
PC available today. On the other hand, the implicit 
integration method converged well with damping 
constants α and β both under 1, although several thousand 
Gauss-Seidel iterations were required to accurately solve 
the linear system for h=1/30 seconds. 

Figure 9: Interior error for the bending rod benchmark. Empirically, numerical instabilities arise for large time-
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steps when the Poisson ratio approaches its maximum 
value of 0.5, which represents an incompressible material. 
To counteract this problem, Picinbono et. al. [11] propose 
using a lower Poisson ratio but adding a penalty force. 
The artificial force at each node is directed normal to the 
opposite face of the element and serves to penalize 
element compression. No formal methods are given to 
justify the realism of this artificial force, or how to relate 
this force to the Poisson ratio for a given material. 
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Figure 11: Surface error for the block and needle test assuming implicit 
integration with real prostate tissue data (MP2) is used as the correct 
deformation. Quasi-static is the only approximation using MP2 that 
numerically converged. The results using MP1 are also compared, but 
they converge to a different solution. 

Figure 11 uses MP2 with implicit integration as the 
correct deformation. It compares the results with the 
quasi-static algorithm using MP2 as well as all the solving 
methods using MP1. The methods using MP1 converge to 
a different steady-state solution, which is intuitive since 
materials with different compressibilities will react 
differently to identical forces or displacement constraints. 
This explains the error at the end of the simulation. Also, 
the quasi-static algorithm with MP2 has far less error than 
the algorithms using MP1. This shows that the accuracy 
of the material properties is of greater importance than the 
choice of solver algorithm. 

In conclusion, material properties impact the 
effectiveness of an algorithm. In particular, 
approximations such as explicit integration and mass 
lumping do not work well for stiff and incompressible 
materials. 

VII. FUTURE WORK 

In the future, we hope to compare the various FEM 
algorithms to physical experimental results rather than to 

numerical approximations. We plan to test quadratic 
strain FEM models and generate special test cases that 
highlight the difference between linear and nonlinear 
models when large deformations are created. We also 
hope to develop an error metric that tests how sensitive an 
algorithm is to changes in the FEM formulation 
parameters, such as material properties, mesh density, and 
mesh shapes. 

To simulate incompressible materials in real time, 
Picinbono et. al. [11] propose using penalty forces. We 
would like to test the accuracy of this approach with a 
large time-step by comparing it to using a high Poisson 
ratio with a small time-step. 

The mass-lumping approach also requires that the 
damping matrix be a scale factor times the lumped mass 
matrix, rather than using the traditional Rayleigh damping 
form. This implies that there are restrictions on the nature 
of damping that is supported by this method. It would be 
useful to understand the physical side effects of restricting 
the damping matrix to a diagonal matrix. 
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