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Abstract— When inserted into soft tissues, flexible needles with
bevel tips have been shown experimentally to follow a path of
constant curvature in the direction of the bevel. By controlling
2 degrees of freedom at the needle base (bevel direction and
insertion distance), these needles can be steered around obstacles
to reach targets inaccessible to rigid needles. Motion planning
for needle steering is a type of nonholonomic planning for a
Dubins car with no reversal. We develop a motion planning
algorithm based on dynamic programming where the path of the
needle is uncertain due to uncertainty in tissue properties, needle
mechanics, and interaction forces. The algorithm computes a
discrete control sequence of insertions and direction changes so
the needle reaches a target in an imaging plane while minimizing
expected cost due to insertion distance, direction changes, and
obstacle collisions. We efficiently sample the state space of needle
tip positions and orientations and define bounds on the errors
due to discretization. We formulate the motion planning problem
as a Markov Decision Process (MDP) and use infinite horizon
dynamic programming to compute an optimal control sequence.
We first apply the method to the deterministic motion case
where the needle precisely follows a path of constant curvature
and then to the uncertain motion case where state transitions
are defined by a probability distribution. Our implementation
generates motion plans for bevel-tip needles that reach targets
inaccessible to rigid needles and demonstrates that accounting
for uncertainty can lead to significantly different motion plans.

Index Terms— steerable needle, medical robotics, nonholo-
nomic motion planning, dynamic programming, Markov deci-
sion process.

I. INTRODUCTION

Many diagnostic and therapeutic medical procedures re-
quire insertion of a needle to a specific location in soft
tissue, including biopsy to obtain a tissue sample for test-
ing, drug treatment injections for anesthesia, or radioactive
seed implantation for brachytherapy cancer treatment. Unlike
traditional rigid needles, highly flexible bevel-tip needles can
be steered around obstacles by taking advantage of needle
bending and the asymmetric forces applied by the needle tip
to the tissue [18], [19], [1]. This steering capability allows
flexible bevel-tip needles to reach targets inaccessible to
traditional rigid needles.

Planning motions for such needles is difficult due to
nonholonomic constraints, particularly in the case with uncer-
tainty in the motion due to the biological variability between
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(a) Steerable needle plan assuming deterministic motion

(b) Steerable needle plan assuming uncertain motion

Fig. 1. Needle must be inserted at left and must reach target (centered at
“+”) inside the body without touching critical areas indicated by polygonal
obstacles in the imaging plane. The motion planner computes a sequence of
insertions and direction changes (indicated by dots) to steer the needle to
the target. In the deterministic motion case (a), the needle precisely follows
a path of constant curvature in the bevel-left or bevel-right direction. In the
uncertain motion case (b), the expected needle path is drawn for a needle
whose orientation after each insertion is uncertain and is distributed as defined
in section VI. The control sequence computed in the uncertain motion case
results in a path with more direction changes but greater clearance from
the obstacles to account for the probability of collision due to needle tip
orientation uncertainty.

humans. In this paper we develop a motion planning algorithm
for steerable bevel-tip needle insertion in an imaging plane
that considers uncertainty in the needle’s response to control.

The feasible workspace for motion planning is defined by
the region of tissues through which the needle can be steered.
Obstacles represent tissues that cannot be cut by the needle,
such as bone, or sensitive tissues that should not be damaged,
such as nerves or arteries. The workspace and obstacles can
be specified by segmenting a 2D cross-section of the patient
anatomy obtained using medical imaging such as ultrasound
or MRI. Although volumetric MR images can be constructed
by stacking multiple planar slices, the inter-slice distance is
significantly greater than the diameter of a medical needle. In
this paper we consider motion plans in an imaging plane.

Steerable bevel-tip needles are controlled by 2 degrees of
freedom actuated at the needle base: insertion distance and
rotation angle about the needle axis. Insertion pushes the



needle deeper into the tissue while rotation re-orients the
bevel at the needle tip. For a sufficiently flexible needle,
rotating the needle base will change the bevel direction
without changing the needle’s position in the tissue. In the
plane, the needle base can be rotated 180◦ about the insertion
axis so the bevel points in either the bevel-left or bevel-right
direction. When inserted, the asymmetric force applied by
the needle tip causes the needle to bend and follow an arc
through the tissue, which we assume is stiff relative to the
needle. It was shown experimentally by Webster et al. that a
flexible bevel-tip needle inserted into a stiff tissue phantom
cuts a path of constant curvature in the direction of the bevel
and the needle shaft bends to follow the path cut by the bevel
tip [18].

The steerable needle motion planning problem is to deter-
mine a sequence of controls (insertions and direction changes)
so the needle tip reaches the specified target while avoiding
obstacles and staying inside the workspace. In the absence of
uncertainty, the path followed by the needle is subject to the
nonholonomic constraint of constant curvature in the bevel-
left or bevel-right direction. This is equivalent to a Dubins car
that cannot drive in reverse and is additionally constrained to
only steer its wheels far left or far right. To minimize tissue
damage, insertion time, and errors, shorter needle paths with
fewer direction changes are preferred.

In this paper we develop a planner that formulates the
motion planning problem as a Markov Decision Process
(MDP) using a discretization of space and orientation and
computes an optimal discrete sequence of controls using
dynamic programming. We consider both the deterministic
motion case (where the needle response to controls is known
with certainty) and the uncertain motion case (where the
probability distribution of responses to controls is known).
Like a well-constructed navigation field, the motion planner
provides an optimal control for any state in the workspace.
However, the planner is not complete; it may not find a
feasible solution when one exists due to discretization error.
The output of our implementation is shown for a sample case
in Fig. 1 and demonstrates that considering uncertainty during
planning results in substantially different motion plans for
steerable needles.

II. RELATED WORK

Webster et al. show experimentally that steerable bevel-tip
needles follow paths of constant curvature in the direction of
the bevel tip [18]. The radius of curvature of the needle is
not significantly affected by insertion velocity [19]. Webster
et al. also develop a nonholonomic model of steerable bevel-
tip needle motion in stiff tissues based on a generalization of
the bicycle model and fit model parameters using experiments
on tissue phantoms [18].

Nonholonomic motion planning has a long history in
robotics and related fields [11], [12]. Past work has addressed
deterministic curvature-constrained path planning where a
mobile robot is constrained to follow a path of minimum
turning radius [7], [10], [16]. Dubins showed that the optimal

curvature-constrained trajectory in open space from a start
pose to a target pose can be described from a discrete set of
canonical trajectories composed of straight line segments and
arcs of minimum radius of curvature [7]. Jacobs and Canny
consider obstacles and construct a configuration space for a
set of canonical trajectories [10]. Sellen’s representation of
orientation by appropriate discretization of a unit circle for
a Dubins path inspired our discretization approach [16]. Our
planning problem considers steerable needles that have con-
stant magnitude turning radius with cost for direction changes
rather than following a path constrained by a minimum turning
radius. In the limiting case of zero cost for direction changes,
previously developed algorithms for deterministic curvature-
constrained Dubins paths can be applied because the needle
can be rotated continuously as it is inserted to approximate a
straight line segment in the path.

Park et al. formulate the planning problem for steerable
bevel-tip needles in stiff tissue as a nonholonomic kinematics
problem based on a 3D extension of a unicycle model and use
a diffusion-based motion planning algorithm to numerically
compute a path [14]. The approach is based on recent
advances by Zhou and Chirikjian in nonholonomic motion
planning including stochastic model-based motion planning
to compensate for noise bias [21] and probabilistic models
of dead-reckoning error in nonholonomic robots [20]. Park’s
method searches for a feasible path in full 3D space using
continuous control but does not consider obstacle avoidance,
although the authors plan to address this limitation. The
method does not handle uncertainty of the response of the
needle to insertion or direction change controls. In this paper,
we develop a 2D motion planning approach for bevel-tip
needle insertion under uncertainty to generate paths to a
target based on discrete controls that minimize expected cost
incurred due to obstacle collisions, insertion distance, and
direction changes.

Past work has investigated needle insertion planning in
situations where soft tissue deformations are significant and
can be modeled. Our past work addressed planning optimal
insertion location and insertion distance for rigid symmetric-
tip needles to compensate for 2D tissue deformations [2],
[3]. Past work has also addressed steering slightly flexible
symmetric-tip needles by translating and orienting the needle
base to explicitly cause tissue deformations that will guide
the needle around point obstacles with oval-shaped potential
fields [6]. Glozman and Shoham also address symmetric-
tip needles and approximate the tissue using springs [9].
We previously developed a different 2D planner to explicitly
compensate for the effects of tissue deformation by combining
finite element simulation with numeric optimization [1]. This
previous approach assuming that bevel direction can only be
set once prior to insertion and uses local optimization that
will fail to find a globally optimal solution in the presence of
obstacles.

Medical needle insertion procedures may benefit from the
more precise control of needle position and velocity made
possible through robotic surgical assistants. A survey of recent



advances in medical robotics was written by Taylor and
Stoianovici [17]. Dedicated hardware for needle insertion
is being developed for stereotactic neurosurgery [13], MR
compatible surgical assistance [5], and prostate biopsy and
therapeutic interventions [8], [15].

III. PROBLEM DEFINITION

A bevel-tip needle, unlike a symmetric-tip needle, will cut
tissue at an angle, as shown in Fig. 2. We assume uniform
soft tissue that is stiff relative to the needle, so the tissue
does not deform significantly. When inserted into soft tissue,
the steerable bevel-tip needle will follow a path of constant
curvature [18] with radius of curvature r, which is a property
of the needle and tissue. In 2D, the direction of the bevel b is
either bevel-left (b=0) or bevel-right (b=1). We only considers
insertion, not retraction, of the needle.

(a) Symmetric tip (b) Bevel tip

Fig. 2. A symmetric-tip needle exerts forces on the tissue equally in all
directions, so it cuts tissue in the direction that the tip is moving. A bevel-
tip needle exerts forces asymmetrically and cuts tissue at an offset angle
depending on the tissue properties and bevel angle.

We define the workspace as a 2D rectangle of depth zmax

and height ymax. We do not consider motion by the needle
out of the imaging plane. Obstacles in the workspace are
defined by (possibly nonconvex) polygons. The target region
is defined by a point t and radius rt.

We assume the needle is controlled at discrete intervals
because needle rotation causes tissue damage and to allow
verification of the needle tip direction since the tip may not
rotate by the same angle as the base due to imperfect torsional
stiffness of the needle shaft. In our model, direction changes
can only occur at discrete control points, which are separated
by an insertion distance of δ. One of two actions u can be
selected at any control point: insert the needle a distance δ
(u = 0) or change direction (rotate the bevel 180◦) and insert
a distance δ (u = 1). We assume the needle insertion velocity
is 0 during rotation and that the needle is inserted at constant
positive velocity between rotations.

Because needle insertion can damage living tissues, cost Ci

is incurred for every unit length that the needle is inserted.
Cost Cr is incurred every time the needle is rotated since
this may also damage tissues and requires additional time. A
prohibitive cost Co is incurred when the needle collides with
an obstacle and Ce when the needle exits the workspace.

The needle’s initial state is defined by a point s, orientation
θ0, and bevel direction b0. A feasible plan is a sequence of
discrete controls U = [u0, u1, . . .] that steers the needle along
a path from the initial state to the target without intersecting
an obstacle. Every control u = 1 in U incurs an additional
cost Cr.

The goal of needle insertion planning is to generate a feasi-
ble plan U that minimizes cost J , where J is a weighted sum

of the costs, as defined formally below for the deterministic
and uncertain motion cases.

IV. PROBLEM FORMULATION

The state of the needle during insertion is fully charac-
terized by the position p = (py, pz) of the needle tip, the
orientation angle θ of the needle tip, and the bevel direction
b, as shown in Fig. 3.

Fig. 3. The state of a bevel-tip needle during insertion is characterized by
the tip position p, tip orientation angle θ, and the bevel direction b. In this
figure, b = 0 (bevel-left) and the needle tip is following a constant curvature
path in the counter-clockwise direction.

Our motion planning algorithm based on dynamic pro-
gramming requires a discrete representation of state. To
make this approach viable, we must round p and θ without
generating an unwieldy number of states while simultaneously
minimizing error due to discretization.

A. Discrete State Space

Our discretization of the planar workspace is based on a
grid of points with a spacing ∆ horizontally and vertically. We
approximate a point p = (py, pz) by rounding to the nearest
point q = (qy, qz) on the grid. For a rectangular workspace
bounded by depth zmax and height ymax, this results in

Ns =
zmaxymax

∆2

position states.
Appropriate discretization of orientation is critical to avoid

an explosion of the number of states and large discretization
error. For example, defining one state for each degree of θ
for each grid position would result in 360Ns states and an
orientation error of up to 0.5◦. This orientation error would
propagate and compound after each state transition. Instead,
we take advantage of discrete insertion distances to develop
a more efficient method for representing orientation.

We define a control circle of radius r, the radius of
curvature of the needle. Each point c on the control circle
represents an orientation θ of the needle, where θ is the angle
of the tangent of the circle at c with respect to the z-axis.
If b = 0, the needle will trace an arc of length δ along the
control circle in a counter-clockwise direction. If b = 1, the
needle will trace an arc in a clockwise direction. If control
u = 1, the needle is rotated 180◦ to change bevel direction.
On the control circle, this action corresponds to rotating the
point c representing the needle tip by 180◦ to the other side
of the circle and tracing subsequent insertions on the control
circle in the opposite direction, as shown in Fig. 4.

We subdivide the control circle into Nc equally sized arcs
of length δ = 2πr/Nc, the needle insertion distance between



Fig. 4. The needle, currently in the b = 0 bevel-left direction, is tracing
the solid control circle with radius r in the counter-clockwise direction. The
needle orientation θ is the tangent angle of the control circle. If the bevel
direction is changed to the b = 1 bevel-right direction, the needle will begin
to trace the dashed control circle in the clockwise direction at a tangent point
180◦ from its tangent point on the solid control circle.

(a) Control Circle (b) Rounded Control Circle

Fig. 5. The control circle is subdivided into Nc = 40 discrete arcs of
length δ, the insertion distance between controls (a). Control circle point 1
corresponds to a needle orientation θ1. The control circle points are rounded
to the nearest point on the ∆-density grid (b). If the needle is at orientation
θ1 and is inserted a distance δ, the displacement of the needle tip will be
c2 − c1.

controls. The endpoints of the arcs generate a set of Nc

control circle points, ci, i = 0, . . . , Nc−1, each representing
a discrete orientation state, as shown in Fig. 5(a). We require
that Nc is a multiple of 4 to facilitate the orientation state
change after a bevel direction change.

We overlay the control circle on a regular grid of spacing
∆ and round the positions of the control circle points ci to the
nearest grid point, as shown in Fig. 5(b). The vector ci+1−ci

represents the displacement of the needle tip in the space of
the Ns grid points for orientation i and bevel direction b = 0.
Similarly, ci−1−ci represents the displacement of the needle
tip for orientation i and bevel direction b = 1. We compute
and store all Nc orientation vectors so we can quickly trace
the needle path as a function of the bevel direction b for every
control interval of length δ. As discussed in section V-B, this
discretization results in 0 discretization error in orientation
when the needle is controlled at δ intervals.

Using this formulation, our state defined by position p =
(py, pz), orientation θ, and bevel direction b can be approxi-
mated as a discrete state by s = {q,Θ, b}, where q = (qy, qz)
is the discrete point closest to p = (py, pz) on the ∆-density
grid, and Θ is the integer index to the discrete control circle
orientation whose corresponding arc includes tangent angle
θ. The total number of discrete states is

N = 2NsNc =
4πrzmaxymax

∆2δ
.

There are two types of special states: target states and
obstacle states. A state s = {q,Θ, b} is a target state if q
is inside the target circle of radius rt centered at t. Any state
s = {q,Θ, b} is considered an obstacle state if the point q is
inside an obstacle polygon.

B. State Transitions

The transition probability matrix Pij(u) specifies the prob-
ability of transitioning from state i to state j when control u
is applied. Target states are cost-free termination states and
transition to themselves with probability 1 regardless of the
control u. Obstacle states transition to a termination state
with probability 1 since the needle can no longer proceed.
Transition probabilities for the remaining states depend on
the uncertainty of needle motion.

In the deterministic motion case, the response of a needle
to a control u is known with certainty. The successor state
m to state i is a function of i and u and is determined by
the grid and control circle defined in section IV-A. Hence,
Pim(u) = 1 and Pij(u) = 0 for all j 6= m.

In the uncertain motion case, the successor state m to state i
is not a deterministic function of state i and control u. Instead,
a probability distribution is defined for state m. However, state
m must be a distance δ from i (within discretization error) and
the bevel direction of state m must equal the bevel direction
of state i if u = 0 and must be unequal otherwise. We discuss
our current implementation of the transition probability matrix
in section VI.

The cost g of a transition is a function of current state i,
control u, and next state j. If state i is a target state, then the
next state j must also be a target state and the cost g(i, u, j)
is 0. If state i is not a target state and the path from i to j
does not cross an obstacle, then

g(i, u, j) = Ciδ +
{

0 if u = 0
Cr if u = 1

where cost is incurred both for distance inserted δ and the cost
of direction change (if any). If the arc from state i to state
j intersects an edge of a polygonal obstacle, then cost Co is
incurred and the system transitions to a termination state. In
our implementation, we approximate the arc between states
by a line segment and check if the segment intersects an edge
of any obstacle polygon. Similarly, a cost Ce is incurred if
the arc starting at state i exits the workspace.

C. Total Cost

For a given sequence of controls U = [u0, u1, . . .] and
initial state x0, the total cost J(x0) is the expected value of
the sum of the transition costs.

J(x0) = E

[ ∞∑
k=0

g(xk, uk, xk+1)

]
(1)

=
∞∑

k=0

N∑
xk+1=1

Pxkxk+1(uk)g(xk, uk, xk+1) (2)



V. MOTION PLANNING OPTIMIZATION

The goal of the planner is to compute a sequence of
controls U that minimizes J(x0), the total expected cost
of inserting a steerable bevel-tip needle to a target. This
problem has the form of a stochastic shortest path problem,
which can be optimally solved using infinite horizon dynamic
programming [4]. The Bellman equation for this problem is:

J∗(i) = min
u

E [g(i, u, j) + J∗(j)] (3)

= min
u

N∑
j=1

Pij(u) (g(i, u, j) + J∗(j)). (4)

The system transitions as a Markov Decision Process (MDP).

A. Dynamic Programming

We use value iteration [4] to solve the dynamic pro-
gramming problem defined by the Bellman equation (4). If
deterministic motion is assumed, the formulation is equivalent
to a deterministic shortest path problem and termination of
value iteration is guaranteed [4]. In general, termination is
guaranteed in N iterations if the transition probability graph
corresponding to some optimal stationary policy is acyclic [4].
Violation of this requirement will be rare in motion planning
since it implies that an optimal control sequence results in a
path that, with probability greater than 0, loops and passes
through the same point at the same orientation more than
once. In our implementation, we terminate value iteration
when the maximum change ε over all states is less than 10−3,
which generally occurs in far fewer than N iterations.

To improve performance, we take advantage of the sparsity
of the matrices Pij(u) for u = 0 and u = 1. Since there are
N states, the matrix Pij(u) has N2 entries. However, each
row of Pij(u) has only k nonzero entries, where k << N
since the needle will only transition to a state j in the spatial
vicinity of state i. Hence, Pij(u) has only kN nonzero entries.
The deterministic motion case is a special case where k = 1.
We represent the Pij(u) matrices using an array of size N ,
where row m of the array points to a list of the nonzero
entries for the row m of Pij(u). By only accessing nonzero
entries of Pij(u) during computation, each iteration of the
value iteration algorithm requires only O(kN) rather than
O(N2) time and memory.

B. Discretization Error

The paths generated by the planner are not precise due to
error incurred during discretization of the state space.

In the deterministic motion case, the needle is always
inserted a distance δ and the orientation of the needle can
be precisely computed and stored by calculating the angle of
the tangent of the (continuous) control circle at the insertion
distance of the needle tip. However, at any control point p,
the error between the approximated point q on the workspace
grid and the real point p is E1 = ∆

√
2/2, half the distance

between two diagonal grid points. If the needle follows a
constant curvature path and is never rotated, the final needle
position error is bounded by E1. However, every time the

bevel direction is changed, the position error at the time of the
direction change becomes permanent because the center of the
original control circle and the center of the control circle after
the direction change will be a distance in the range 2r±∆

√
2

apart. Hence, for a needle path with k direction changes, the
final orientation is precise but the error in position is bounded
above by

Ek = k∆
√

2 + ∆
√

2/2 =
∆
√

2
2

(2k + 1) .

In the uncertain motion case, additional error is incurred
due to the discretization of the probability distribution into
states. This error depends on the probability distribution.

Another related source of error is the control distance δ. A
constant curvature path may exist between a given start pose
and end pose when δ → 0 but may not exist when δ is finite.

VI. COMPUTATIONAL RESULTS

We implemented the motion planner in C++ and tested it
on a 1.6GHz Pentium M laptop. We set the needle radius of
curvature r = 5.0. The workspace is defined by zmax = 10
and ymax = 5. The workspace discretization is defined by
parameters Nc = 100, ∆ = 0.1 and δ = 2πr/Nc = 0.314.
Transition cost parameters were set to Ci = 1, Cr = 10,
Co = 1000, Ce = 100. The resulting dynamic programming
problem contained N = 1,000,000 states.

In our current implementation of the uncertain motion
case, we model uncertainty due to tissue inhomogeneity that
introduce noise into the needle tip orientation. We assume
80% probability that the needle follows the deterministic
path, 10% probability that the needle orientation is increased
by 3.6◦ (one transition along the control circle), and 10%
probability that the needle orientation is decreased by 3.6◦.
These probabilities were selected for testing purposes; we
plan to perform physical experiments to obtain accurate
estimates of the transition probabilities in future work.

The output of the method is shown in Fig. 1 for a test case
containing 5 polygonal obstacles. The path in the uncertain
motion case has a greater clearance from the obstacles and
workspace boundary to avoid obstacle collision and exit
penalties when the needle deviates from the expected path.
However, the needle cannot deviate too far into the free space
and still reach the target region because of the large radius
of curvature of the needle relative to the workspace.

The uncertain motion solution requires 3 direction changes
whereas the deterministic motion solution requires only 1
direction change. As a consequence, the final discretization
error of 0.17 for the uncertain motion solution is greater than
the discretization error of 0.15 for the deterministic motion
solution. The expected needle path based on a constant curva-
ture response to the computed control sequence of insertions
and direction changes differs from the approximate needle
path based on the discrete states used in the planner algorithm,
as shown in Fig. 6. The deterministic motion solution required
26 seconds of computation time to build the data structures
and terminate after 44 value iterations. The uncertain motion
solution required 58 seconds and 51 value iterations.



(a) Steerable needle plan assuming deterministic motion

(b) Steerable needle plan assuming uncertain motion

Fig. 6. The solid line shows the expected needle path based on a
constant curvature response to the computed control sequence of insertions
and direction changes. The dotted line shows the approximate needle path
based on the discrete states used in the planner algorithm. Errors due to
discretization are smaller in the deterministic motion solution because the
bevel direction changes fewer times.

VII. CONCLUSION

We develop a motion planning algorithm for bevel-tip
steerable needles that computes a discrete control sequence
of insertions and direction changes so the needle path avoids
polygonal obstacles and reaches a target on a 2D imaging
plane. We define the state space by a regular grid of points, an
efficient discretization of needle orientation, and bevel direc-
tion. We formulate the motion planning problem as a Markov
Decision Process (MDP) and compute an optimal sequence
of controls using infinite horizon dynamic programming.

In the deterministic motion case, the needle precisely
follows a path of constant curvature. In the uncertain motion
case, state transitions are based on a probability distribution.
We observe that computed motion plans in the uncertain mo-
tion case stay further away from obstacles and the workspace
boundary than paths in the deterministic motion case. Intu-
itively this is expected because the large cost of colliding
with an obstacle or exiting the workspace, even weighted by
a small probability, is greater than the costs incurred inserting
the needle with more direction changes or along a longer path.

We implemented the motion planner in C++ and ran a
test problem of 1,000,000 states shown in Fig. 1 on a
1.6GHz Pentium M laptop. The method required 26 seconds
to compute the deterministic motion solution and 58 seconds
for the uncertain motion case. While this performance is
adequate for grid dimensions of 50 by 100 with 100 discrete
orientations, we hope to decrease computation requirements
to allow interactive applications or larger state spaces with
smaller discretization errors. In future work, we plan to
improve performance by considering alternatives to the value
iteration method and investigate the state transition probability
distributions using physical experiments.

ACKNOWLEDGMENT

We thank Russ Taylor for introducing us to the problem of
needle insertion and Robert Webster, Dezhen Song, A. Frank
van der Stappen, and K. Gopalakrishnan for their valuable
feedback and assistance. We also thank physicians Leonard
Shlain of CPMC and I-Chow Hsu of UCSF for their feedback
on medical aspects of this work.

REFERENCES

[1] R. Alterovitz, K. Goldberg, and A. Okamura, “Planning for steerable
bevel-tip needle insertion through 2D soft tissue with obstacles,” in
Proc. IEEE Int. Conf. on Robotics and Automation, Apr. 2005, pp.
1652–1657.

[2] R. Alterovitz, J. Pouliot, R. Taschereau, I.-C. Hsu, and K. Goldberg,
“Needle insertion and radioactive seed implantation in human tissues:
Simulation and sensitivity analysis,” in Proc. IEEE Int. Conf. on
Robotics and Automation, vol. 2, Sept. 2003, pp. 1793–1799.

[3] ——, “Sensorless planning for medical needle insertion procedures,”
in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 3,
Oct. 2003, pp. 3337–3343.

[4] D. P. Bertsekas, Dynamic Programming and Optimal Control, 2nd ed.
Athena Scientific, 2000.

[5] K. Chinzei, N. Hata, F. A. Jolesz, and R. Kikinis, “MR compatible
surgical assist robot: System integration and preliminary feasibility
study,” in MICCAI, 2000.

[6] S. P. DiMaio and S. E. Salcudean, “Needle steering and model-based
trajectory planning,” in MICCAI, 2003.

[7] L. Dubins, “On curves of minimal length with a constraint on average
curvature and with perscribed initial and terminal positions and tan-
gents,” American Journal of Mathematics, vol. 79, pp. 497–516, 1957.

[8] G. Fichtinger, T. L. DeWeese, A. Patriciu, A. Tanacs, D. Mazilu, J. H.
Anderson, K. Masamune, R. H. Taylor, and D. Stoianovici, “System
for robotically assisted prostate biopsy and therapy with intraoperative
CT guidance,” Academic Radiology, vol. 9, no. 1, pp. 60–74, 2002.

[9] D. Glozman and M. Shoham, “Flexible needle steering and optimal
trajectory planning for percutaneous therapies,” in MICCAI, Sept. 2004.

[10] P. Jacobs and J. Canny, “Planning smooth paths for mobile robots,” in
Proc. IEEE Int. Conf. on Robotics and Automation, May 1989.

[11] J.-C. Latombe, Robot Motion Planning. Kluwer Academic Pub., 1991.
[12] ——, “Motion planning: A journey of robots, molecules, digital actors,

and other artifacts,” International Journal of Robotics Research, vol. 18,
no. 11, pp. 1119–1128, Nov. 1999.

[13] K. Masamune, L. Ji, M. Suzuki, T. Dohi, H. Iseki, and K. Takakura,
“A newly developed stereotactic robot with detachable drive for neu-
rosurgery,” in MICCAI, 1998.

[14] W. Park, J. S. Kim, Y. Zhou, N. J. Cowan, A. M. Okamura, and
G. S. Chirikjian, “Diffusion-based motion planning for a nonholonomic
flexible needle model,” in Proc. IEEE Int. Conf. on Robotics and
Automation, Apr. 2005, pp. 4611–4616.

[15] C. Schneider, A. M. Okamura, and G. Fichtinger, “A robotic system for
transrectal needle insertion into the prostate with integrated ultrasound,”
in Proc. IEEE Int. Conf. on Robotics and Automation, May 2004, pp.
2085–2091.

[16] J. Sellen, “Approximation and decision algorithms for curvature-
constrained path planning: A state-space approach,” in Workshop on
the Algorithmic Foundations of Robotics (WAFR), 1998, pp. 59–67.

[17] R. H. Taylor and D. Stoianovici, “Medical robotics in computer-
integrated surgery,” IEEE Transactions on Robotics and Automation,
vol. 19, no. 5, pp. 765–781, Oct. 2003.

[18] R. J. Webster III, N. J. Cowan, G. Chirikjian, and A. M. Okamura,
“Nonholonomic modeling of needle steering,” in Proc. 9th International
Symposium on Experimental Robotics, June 2004.

[19] R. J. Webster III, J. Memisevic, and A. M. Okamura, “Design con-
siderations for robotic needle steering,” in Proc. IEEE Int. Conf. on
Robotics and Automation, Apr. 2005, pp. 3599–3605.

[20] Y. Zhou and G. S. Chirikjian, “Probabilistic models of dead-reckoning
error in nonholonomic mobile robots,” in Proc. IEEE Int. Conf. on
Robotics and Automation, Sept. 2003, pp. 1594–1599.

[21] ——, “Planning for noise-induced trajectory bias in nonholonomic
robots with uncertainty,” in Proc. IEEE Int. Conf. on Robotics and
Automation, Apr. 2004, pp. 4596–4601.


