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ABSTRACT

As robots penetrate into real-world environments, practical human-
robot co-existence issues such as the requirement for safe human-
robot interaction are becoming increasingly important. In almost
every vision-capable mobile robot, the ield of view of the robot is
occluded by the presence of obstacles such as indoorwalls, furniture,
and humans. Such occlusions force the robots to be stationary or
to move slowly so that they can avoid collisions and violations of
entry into the personal spaces of humans. We see this as a barrier
to robots being able to optimally plan motions with reasonable
speeds. In order to solve this problem, we propose to augment the
sensing capability of a robot by using a commodity WiFi receiver.
Using our proposed method, a robot can observe the changes in
the properties of received signals, and thus be able to infer whether
a human is present behind the wall or obstacles, which enhances
its ability to plan and navigate eiciently and intelligently.
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·Computingmethodologies→ Feature selection; ·Computer
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1 INTRODUCTION

With the increased deployment of robots in real-world scenarios,
practical human-robot interaction issues such as safety and socia-
bility are becoming increasingly important. With recent advances
in robotic planning and control, although the reaction of robots is
becoming more and more agile, for many robotics applications it
is still not on par with the dynamics of humans. Given the limited
capability of fast reaction, the demand for better sensing arises.
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Figure 1: Our system consisting two WiFi devices, a transmitter

which can be exiting WiFi Access Point (AP) and a receiver which

can be WiFi card on the robot. The receiver receives packets trans-

mitted by the transmitter then analyze the properties of the re-

ceived packet to estimate whether human is present or not.

We hypothesize that ś for a robot equipped with better sensing
capabilities, its required reaction time can be relaxed, and safety
and sociability can be increased.

Most on-board sensors of a robot, such as cameras, LIDAR, in-
frared, and ultrasonic sensors, require line-of-sight between the
sensor and the target. These sensors may serve perfectly in the
seen world, but in a crowded environment or places that have many
blind spots, the line-of-sight requirement of these sensors makes
it challenging for a robot to navigate safely and sociably. If the
sensors were capable of X-ray vision for non-line-of-sight sensing,
a robot could overcome these blind spots, plan its actions better,
and ensure safer and more natural human-robot interaction for
social robots.

Existing works have studied the seeing around the corner prob-
lem in robotics using vision [14, 4] and acoustics [3]. Cameras
used in these systems are expensive, special, and require adequate
lighting in the environment. Sound of footsteps is used to local-
ize humans [3], but these solutions are not efective unless the
environment is quiet and humans are walking as opposed to just
standing around the corner. Recent works have exploited radio fre-
quency (RF) signal’s capability to penetrate walls to detect human
igures [1, 19, 18], but these solutions require large antenna arrays
and moving human igures.

In this paper, we study the problem of determining whether a
human is present around the corner in non-line-of-sight situations
by using only commodity WiFi devices. We propose a solution that
relies upon commodity WiFi devices and extracts features from
received WiFi signals. In addition to standard coarse-grained signal
power measurements such as Received Signal Strength Indicator
(RSSI), we performmultipath estimation using ine-grained Channel
State Information (CSI). We also extract features that represent
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Figure 2: System Overview. The transmitter sends WiFi packets

where the signal can travel directly, pass through the human body,

and relected to the receiver. The receiver receives the packet and

calculates the properties of the signal. Then our system extracts the

features which are later used for classiication on human presence.

signal variability over time. Utilizing all these features, we model
and classify the state of the environment.

Our solution works in real-time and is not dependent on the
environments. Unlike prior works, we require only 50ms for sens-
ing, which makes it suitable for indoor mobile robot applications.
Since we rely on commodityWiFi devices, the solution can be easily
incorporated into mobile robots. The extended sensing capability
does not add signiicant cost as many robots already use WiFi for
connectivity. We evaluate our solution in multiple unseen envi-
ronments (i.e., training and testing environments are diferent) to
demonstrate the robustness of our system.We compare our solution
with existing ones and show that in challenging environments, the
proposed solution outperforms the existing ones.

2 SYSTEM OVERVIEW

We study the problem of detecting human presence in around-

the-corner situations using commodity WiFi devices. An example
scenario is depicted in Figure 1. A WiFi transmitter, such as a WiFi
AP in a building, and aWiFi receiver, such as aWiFi device mounted
on a robot, are placed on an L-shaped corridor in a non-line-of-sight
setup. The goal of the receiver is to determine whether there are
humans on the other side where the WiFi transmitter is.

An overview of how the proposed solution is shown in Figure 2.
Tx and Rx refer to the transmitter and the receiver, respectively.
When the transmitter sends a packet, the WiFi signal is broadcasted
in all directions. The signal travels through the walls and reaches
the receiver on the shortest path. Some of the signals get attenu-
ated by the human body (if present) before reaching the receiver.1

Signals also get relected multiple times before the receiver receives
them. Hence, the received signal is a combination of all these sig-
nals traveling on diferent paths. A number of consecutive WiFi
packets are retrieved, a set of features is computed, and classiied
to determine if a human is present around the corner.

3 WIFI FEATURE EXTRACTION

This section describes the WiFi features that the system uses to
represent the RF environment. All features are extracted from the
same number of received packets.

1The human is occluded by the corner, which results in no direct line-of-sight (LOS)
path for the WiFi signal to pass through the human body and then directly received
by the receiver. All such signals are attenuated further by the walls and other objects
in the environment.

3.1 Received Signal Strength Features

The Received Signal Strength Indicator (RSSI) is an estimate of power
in the received signal at an RF client. The signal strength is afected
by multiple factors such as the distance between Tx and Rx, obsta-
cles, Tx strength, and Rx antenna’s property. Since the human body
attenuates WiFi signals, e.g., by absorbing signals, it changes the
RSSI value. Hence, we use RSSI as one of the features to represent
the RF environment.

For each packet P , theWiFi card reports three RSSI values: RSSIa ,
RSSIb , and RSSIc , where each value corresponds to one of the three
receiving antennas. We calculate the mean and the variance of each
RSSI from the N received packets: (x ∈ {a,b, c})

µRSSIx =
1

N

N
∑

i=1

RSSIxi , σ
2
RSSIx

=

1

N

N
∑

i=1

(RSSIxi − µRSSIx ) (1)

3.2 Efective Signal to Noise Ratio Features

The Efective Signal Noise Ratio (SNR), whichmeasures the quality of
theWiFi signals, is afected by environmental changes. We calculate
the efective SNR for four modulation schemes, i.e., BPSK, QPSK,
16QAM, and 64QAM. The efective SNR is calculated from the
channel state information (CSI), which is described next. Since we
only use one transmission antenna, it is a Single Input Multiple

Output (SIMO) system. The calculated efective SNR is a 1×4 vector
(SNR0, SNR1, SNR2, SNR3), where each element corresponds to a
modulation scheme.

Similar to RSSI, we calculate the mean and the variance for each
efective SNR across the N received packets, which become parts
of the feature vector: (j = 0, 1, 2, 3)

µSNRj =
1

N

N
∑

i=0

SNRji , σ 2
SNRj

=

1

N

N
∑

i=1

(SNRji − µSNRj ) (2)

3.3 Signal Tendency Index

The Signal tendency index (STI) [20, 21] is based on Procrustes
analysis to compare shape similarity across diferent packets. It is
calculated from the Channel State Information (CSI) containing ine-
grained information of both the magnitude and the phase of each
subcarrier between each transmitter-receiver antenna pair [17].

For the CSI vector (H t
1 ,H

t
2 , . . . ,H

t
n ), at time step, t = 1, 2, . . . ,N ,

we standardize the values by subtracting the mean and dividing by
the standard deviation:

Ĥ t
=

[H t
1 − H̄ t

,H t
2 − H̄ t

, . . . ,H t
n − H̄ t ]

σ (H t )
(3)

H̄ t
1 =

1

n

n
∑

i=0

H t
i , σ (H t ) =

√

∑t
i=0(H

t
i
− H̄ t )2

n
(4)

The STI between two consecutive packets is S =




Ĥ t − ˆH t−1




,

which is the Euclidean distance between the curves in STI metrics
and larger STI value means greater diference. An example of STI
values between diferent packets is shown in Figure 3. The changes
between packets 20-40 are larger than the rest as they are collected
while a person walks, which severely distorts the WiFi signal be-
tween packets. As for the empty space (0-20) and a person standing
still (40-60), the diference is similar to the environment is almost
static. We also observe that even in the empty space, CSI is not
stable.
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Figure 3: Example of STI value across diferent packets. Packets 0-

20: empty environment. Packets 20-40: a person is walking. Packets

40-60: a person is standing still.
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Figure 4: Example of eigenvalues formultipath analysis in diferent

packets. Packet 0-20: empty environment. Packet 20-40: a person is

walking. Packet 40-60: a person is standing still.

With N packets received, we calculate N − 1 STI values. The
mean and variance of the STI are then computed and used as a
feature.

3.4 Multipath

As the human body attenuates WiFi signals, the multipath proile of
the WiFi environment changes. When we have many relectors in
the environment (e.g., a crowded scene), the number of multipath
is large, but the diference in energy of diferent paths is small. For
a relatively less crowded scene, the number of multipath is less, but
the energy diferences are high. This property of multipath can be
modeled from the WiFi CSI values.

The CSI measurement, X , which contains both magnitude and
phase information, can be used to compute the angle of arrival
(AoA) [15] of a signal. For example, in recentWiFi-based localization
algorithms [11, 5], the AoA of the direct path (which is relevant to
the localization problem) is isolated by taking the eigenvector of
the matrix,XXH , for which, the eigenvalue is zero. The eigenvector
goes through further processing to obtain the direct path.

Inspired by this, one can compute the AoA corresponding to each
eigenvalue to create a multipath proile of the WiFi environment.
However, we propose that, in order to model the multipath proile,
we do not necessarily have to compute the AoAs. Instead, we can
take the top k largest eigenvalues of XXH to have the simplest way
to create a feature that inherently represents the multipath proile.
An example of the proposed multipath-based features is shown in
Figure 4 where we use top seven eigenvalues. We observe that the
three behind-the-wall cases: empty space, a person walking, and a
person standing is clearly distinguishable by the proposed feature.

Figure 5: Data collection Environments. Each corner is diferent

from one another, the layout and materials around each corner cre-

ates totally diferent WiFi propagation characteristics.

4 HUMAN PRESENCE DETECTION

We formulate the non-line-of-sight around the corner human de-
tection as a classiication problem having three classes: empty,
standing, and moving. We implement a Random Forest [12] clas-
siier that uses the feature vector described in the previous section.
We empirically determine that extracting features from a total of
N = 50 packets result in the best classiication accuracy while
keeping the sensing delay as low as 50ms.

5 IMPLEMENTATION

We implement the proposed system using two laptops having In-
tel 5300 WiFi Network Interface Cards (NICs). We use Linux CSI
tool [8] for collecting PHY layer CSI information from transmitted
packets. We operate in the 5GHz WiFi spectrum to avoid irmware
limitations [7]. The transmitter operates in the injection mode and
the receiver operates in the monitor mode.

To train and test the classiier, we collect WiFi data from seven
diferent corners across diferent loors of a four-storied building
by placing the transmitter and the receiver at varying locations.
Some example setups are shown in Figure 5. The laptop used as
AP transmits WiFi packets over one antenna (NTX = 1) and the
receiver receives on three antennas (NRX = 3). The packets are
transmitted at 1000Hz, which results in a sensing delay of 50ms
for 50 packets used for feature extraction. Each received packet
contains the RSSI and CSI for each antenna. The CSI is a NTx ×

NRx × 30 matrix where 30 is the number of subcarriers in the WiFi
channel reported by the Linux CSI tool.

We consider three scenarios: 1) no one is in the environment,
2) a person is standing around the corner who is occluded by the
wall from the receiver’s viewpoint, and 3) a person walking in the
occluded area.

6 RESULTS

To evaluate and examine the robustness of our system, the training
and testing datasets are collected from diferent loors. Hence, our
model has not seen any example from the testing environments.
We report the precision, recall, and F1 score for each class, and the
overall accuracy in Table 1.
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Class Precision Recall F1 Overall Accuracy

Empty 0.48 0.59 0.53

61.37%Standing 0.47 0.36 0.4

Moving 0.89 0.89 0.89

Table 1: Classiication results with three classes.

We also show the result of binary classiication: empty and
occupied by combining the standing and moving classes into a
single class. The result is shown in Table 2.

Class Precision Recall F1 Overall Accuracy

Empty 0.5 0.33 0.4
66.47%

Occupied 0.71 0.83 0.77

Table 2: Classiication results with two classes.

7 DISCUSSION

At irst glance, the results reported in this paper may seem to have
fallen short of what similar systems have reported [21, 16]. However,
there is a major diference in how the evaluation is done and how
the experiment (Tx and Rx) was setup.

We conduct experiments to demonstrate the expected perfor-
mance of the proposed system in real-world scenarios that have
a completely new environment. In other words, we train and test
on completely diferent environments. On the other hand, existing
works [21, 16] collect a single dataset and then split it into train-
ing and testing sets. Due to the limited number of locations, their
training and testing sets contain the same transmitter and receiver
location pairsśwhich makes the classiication task easier. If we split
our dataset into training and testing, and redo the experiment, we
achieve results similar to [16], which is reported in Table 3. We also
perform binary classiication, i.e., empty vs. occupied, by splitting
the dataset. The result is shown in Table 4.

Furthermore, the experimental setup in existing works considers
line-of-sight situations where the human is not occluded. These
systems use 1500 packets at 50Hz, which results in 30s sensing time,
which is 600X slower than our solution.

The diference in the two evaluation methods revealed that if
our system is deployed to a speciic area, it can continuously collect
more data for training and can potentially see a signiicant perfor-
mance boost. Thus, the results reported in this paper should be
treated as the lower bound if the system is deployed to a completely
new environment, which can still provide important information
to improve safety.

Class Precision Recall f1 Overall Accuracy

Empty 0.95 0.95 0.95
94.49%Standing 0.96 0.94 0.95

Moving 0.92 0.94 0.93

Table 3: Classiication results with 3 classes and evaluated through

splitting training and testing data set.

Class Precision Recall f1 Overall Accuracy

Empty 1 0.97 0.98
98.85%

Occupied 0.98 1 0.99

Table 4: Classiication results with 2 classes and evaluated through

splitting training and testing data set.

8 RELATED WORK

Prior works have used WiFi to track humans through walls [2]
but these solutions require the human subjects to be continuously
moving. WiFi has also been used for occupancy detection [21, 16]
and crowd counting [22], but these systems require the subject to
cut through the direct line between the transmitter and the receiver
ś which does not apply to around the corner situations. While
WiFi has been used for imaging [9], these solutions require special
antennas and antenna arrays which are not practical for indoor
robots due to space and weight requirements. WiFi has also been
used in 3D imaging [10, 6], but these solutions require a pair of
transmitter and receiver to travel in a speciic pattern.

Frequency modulated Continuous Wave (FMCW) technique has
been explored to capture human igures through the wall [1, 19, 18].
While FMCW signal provides better granularity, these systems
require custom devices to operate at lower frequencies for a better
penetration capabilitywhichmakes the antenna size large. Through-
wall radars such as [13] are unsuited for our application due to size
and complexity of the system.

9 CONCLUSION AND FUTUREWORK

We present a system that detects human presence in non-line-of-
sight around-the-corner situations using only commodity WiFi
devices. We evaluate our system in diferent unseen environments
to demonstrate its robustness. In our future work, we plan to explore
the possibility of extracting more information from CSI measure-
ments by analyzing multipath proile, which can be combined with
the 3D model of the environment to better estimate the efects of
the human body on the WiFi signal. We also plan to collect more
data and conduct experiments to observe whether deep learning
models can increase performance.
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