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Abstract— Lung cancer is the deadliest form of cancer,
and early diagnosis is critical to favorable survival rates.
Definitive diagnosis of lung cancer typically requires needle
biopsy. Common lung nodule biopsy approaches either carry
significant risk or are incapable of accessing large regions of
the lung, such as in the periphery. Deploying a steerable needle
from a bronchoscope and steering through the lung allows for
safe biopsy while improving the accessibility of lung nodules
in the lung periphery. In this work, we present a method
for extracting a cost map automatically from pulmonary CT
images, and utilizing the cost map to efficiently plan safe
motions for a steerable needle through the lung. The cost
map encodes obstacles that should be avoided, such as the
lung pleura, bronchial tubes, and large blood vessels, and
additionally formulates a cost for the rest of the lung which
corresponds to an approximate likelihood that a blood vessel
exists at each location in the anatomy. We then present a motion
planning approach that utilizes the cost map to generate paths
that minimize accumulated cost while safely reaching a goal
location in the lung.

I. INTRODUCTION

Lung cancer is the deadliest form of cancer in the United
States [1], and early diagnosis is critical to survival. While
medical imaging is used to identify potentially cancerous
nodules in the lung, definitive diagnosis typically requires
biopsy [2]. Transthoracic biopsy, in which a needle is in-
serted through the chest wall to the nodule, is a commonly
used biopsy technique. However, it carries a significant risk
of pneumothorax (lung collapse), a serious complication [3],
and errors in needle targeting can mitigate the procedure’s
effectiveness [4]. An alternative approach is transoral biopsy
in which a bronchoscope is inserted into the airway to biopsy
the nodule. The transoral approach significantly lowers the
risk of pneumothorax, but many nodules, especially those
in the peripheral lung (near the chest wall) or far from
larger bronchial tubes, are inaccessible using current devices.
To combine the benefits of the transthoracic and transoral
biopsy approaches without the drawbacks, we are developing
a robotic system that deploys a steerable needle from a
bronchoscope [5], [6] to enable accurate access to nodules
throughout the lung for biopsy.

In this paper, we present an approach for automatically
extracting relevant anatomical information from pulmonary
medical images and planning a safe motion for a steerable
needle to a desired target in the lung. The steerable needle

M. Fu, A. Kuntz, and R. Alterovitz are with the Department of Computer
Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
27599, USA. {mfu,adkuntz,ron}@cs.unc.edu

R. J. Webster III is with the Department of Mechanical Engineering,
Vanderbilt University, Nashville, TN 37235, USA.

Fig. 1. To facilitate the safe guidance of a steerable needle to a target
within a lung for biopsy, we extract anatomical information from a pre-
procedure pulmonary CT image. Left: One slice of the example volumetric
porcine pulmonary CT image. Middle: Automatically segmented obstacles,
namely the boundary of lung (cream), the bronchial tree (gold), and large
blood vessels (red). Right: Automatically extracted vasculature, in which
darker voxels have higher cost due to the increased risks associated with
damaging or puncturing these structures during a biopsy. The pulmonary
cost map encodes costs for obstacles and small blood vessels.

Fig. 2. An example planned path (green) for the steerable needle in a
porcine lung. The path starts from an initial pose (start) and reaches a
target point (goal) while avoiding obstacles and minimizing the cost along
the path.

is deployed from the bronchoscope, exits the bronchial tube,
and steers through the lung parenchyma (the tissue outside
the bronchial tubes) to the target. The lung parenchyma
is cluttered with obstacles that the steerable needle should
avoid. These obstacles include large blood vessels (which
could result in clinically significant hemorrhage if damaged),
the bronchial tubes (which could damage the needle once
the needle has entered the parenchyma), and the lung pleura
(the outer membrane of the lung, which could lead to lung
collapse if pierced). The lung parenchyma also includes
many small blood vessels, and it is impossible in most cases
to guide a needle to a target in a manner that avoids all
blood vessels. In addition to avoiding the obstacles specified
above, a safe needle plan should also minimize the piercing



of small blood vessels when possible to further reduce the
risk of bleeding.

We first present an approach for automatically extracting
information from preoperative medical Computed Tomogra-
phy (CT) images and representing the information in a form
that is usable by a motion planner for steerable needles.
We use a cost map to encode the risk of steering the
needle through specific locations in the lung. To enable
avoidance of obstacles in the lung (i.e., the large blood
vessels, the bronchial tubes, and the boundary of the lung),
we automatically extract their locations from the CT image
and encode them in the cost map as infinite cost. To minimize
damage to small blood vessels, we encode a cost for them
based on a cylindrical shape model designed to identify vas-
culature. We illustrate the automatically computed obstacles
and vasculature in Fig. 1.

We next present a steerable needle motion planner that
uses the cost map to compute motion plans that avoid
obstacles while minimizing damage to vasculature. We as-
sume the needle is steered during breath holds in which the
inflation of the lung matches the preoperative CT image.
To generate motion plans we use a sampling-based motion
planner that is based on the Rapidly-Exploring Random
Tree (RRT) algorithm [7]. Our motion planner builds on a
previously-developed motion planner for steerable needles
[8], extending it to consider a pulmonary cost map. The
motion planner uses the cost map to ensure a plan avoids
obstacles and to compute the cost of a plan based on the
needle trajectory’s accumulated cost in the cost map (see
Fig. 2). We also speed up the motion planner’s obstacle
collision detection by leveraging geometric simplifications
of the needle with respect to the obstacles in the cost map.
The motion planning process repeats as time allows, allowing
us to generate plans with lower cost in an anytime manner.

We demonstrate the accuracy of our automatic methods
for computing the vasculature in the lung by comparing our
results with images hand segmented by experts from the
VESSEL12 challenge [9]. We then automatically generate
a cost map from a CT scan of an ex vivo porcine lung, and
we demonstrate that our motion planner, using the cost map,
results in safer steerable needle motion plans in the lung.

II. RELATED WORK

A. Lung Segmentation

Prior work on motion planning for steerable needles in
the lung considered obstacles that were manually segmented
and only included larger bronchial tubes and blood vessels
[8], [6]. In this work, we compute a pulmonary cost map
by automatically segmenting the lung boundary, bronchial
tubes, and large and small blood vessels from a CT image.

For a comprehensive survey of segmentation methods for
pulmonary structures we direct the reader to [10]. Different
lung boundary segmentation methods have been proposed,
including region growing, optimal thresholding, and graph-
cut [11]. For airway segmentation, single thresholding, rule-
based methods, fuzzy logic, fuzzy connectedness, wavefront
propagation, and mathematical morphology have all been

used [12], [13]. There are also many methods for ves-
sel segmentation which rely on a combination of vascular
models, image features, and extraction schemes [14]. These
methods can be broadly classified into the following cate-
gories: Hessian-based vesselness filters [15], region growing
methods, thresholding-based methods, fuzzy connectedness
methods, and machine learning based methods [10]. In some
cases, a Hessian-based filter is applied to the image to obtain
a response known as “vesselness”. In our method, we adapt
the region growing approach for lung boundary segmentation
[11], the morphology-based approach for airway segmen-
tation [12], and the Hessian-based vesselness enhancement
approach for vascular segmentation [15].

B. Steerable Needle Motion Planning

After generating the pulmonary cost map, we plan the
motion of a steerable needle to a clinical target. We specifi-
cally focus on steerable needles that are flexible and have an
asymmetric tip (e.g., a bevel), which exerts an asymmetric
force on soft tissue when inserted, causing the needle to
curve in the direction of the bevel [16], [17], [18]. These
needles can be rotated axially at their base to change the
direction of curvature during insertion, and the turning radius
of the needle during insertion can be controlled via duty
cycling [19]. To represent the kinematics of steerable needles,
we use a 3D unicycle model [17], [20], [16], [18].

Motion planning and control algorithms have been devel-
oped to guide steerable needles to targets [21], [18]. A variety
of motion planning approaches have been proposed, includ-
ing optimization-based approaches [22], [23], fractal tree-
based planning [24], and sampling-based motion planning
[25]. Motion planners have explicitly considered the impact
of motion uncertainty and tissue deformations. Approaches
have included computing motion plans that maximize the
probability of reaching a target while avoiding obstacles [26],
[27], considering error propagation [28], adapting helical
trajectories [29], fast trajectory correction [30], closed-loop
control using feedback from medical imaging [31], and
using a sliding mode controller that does not require a
priori knowledge of the needle’s turning radius [32]. High-
frequency replanning has successfully been used as a way to
combine motion planning and control [33], [34]. This paper
builds on the approach of Patil et al. [25], which uses a
variant of a rapidly-exploring random tree [35] and specif-
ically considers the geometry of the needle’s kinematics to
efficiently generate motion plans.

Motion planners can use a cost map to evaluate plan
quality. Caborni et al. developed a cost function that accounts
for path length, clearance from no-go areas, and accumulated
risk along a 2D path for a steerable flexible probe in the
brain [36]. Cost maps in 2D have been used when planning
motions for autonomous vehicles (e.g., [37], [38], [39]).
King et al. demonstrate efficient computation of a non-round
object’s footprint in 2D cost maps [40]. We approximate the
steerable needle’s motion in the cost map by building on the
approach in [39] to efficiently and conservatively account for
the shape of the needle in the cost map.



III. PROBLEM DEFINITION

Our method consists of two phases. The first is to auto-
matically generate a pulmonary cost map from a volumetric
CT image of the lung. The second is to plan safe motions
for the steerable needle based on the pulmonary cost map.

A. Computing a Pulmonary Cost Map from a CT Image

Let I be the pulmonary volumetric CT image of size
imax × jmax × kmax voxels, and x = (i, j, k) be an ordered
tuple of indices where i = 0, . . . , imax−1; j = 0, . . . , jmax−
1; k = 0, . . . , kmax − 1. We denote the intensity of voxel
x in I as I (x) in Hounsfield Units (HU) with a typical
range of [−1000, 3000]. The size of a single voxel in I is
Svoxel = [s1, s2, s3]. Note that imax, jmax, kmax, s1, s2, and
s3 depend on the settings and model of the CT scanner.

Our first objective is to compute a pulmonary cost map
Mcost of the same size as I that encodes the costs associated
with traversing each corresponding voxel of I with a needle.
We define Mcost (x) ∈ [0, 1]∪{∞} as the cost of traversing
voxel x in I . If the voxel x in I is part of an obstacle
(i.e., a bronchial tube, the space outside the lung surface,
or a large blood vessel with an approximate radius greater
than a physician-specified parameter rvessel), then we assign
Mcost(x) =∞. Otherwise, we assign Mcost(x) = α ∈ [0, 1]
which corresponds to vesselness response, an approximate
likelihood that the voxel contains a vessel. A higher value
indicates higher risk when steering a needle through that
voxel.

B. Steerable Needle Motion Planning in a Cost Map

A configuration q ∈ SE(3) of the steerable needle is
defined by the pose of the needle’s tip, which we represent
as a 4× 4 matrix

q =

(
R p
0 1

)
,

where R ∈ SO(3) is the rotation matrix defining the
orientation of the needle tip and p ∈ R3 denotes the position
of the needle tip in the coordinate frame of the real world.

We control the steerable needle by inserting and axially
rotating the needle about its base. So we define the control
input as u = {d, φ, κ}, where d ∈ R is insertion distance,
φ ∈ [0, 2π) is the axial rotation angle of the tip which defines
the direction in which the needle curves, and κ ∈ R+ ∪ {0}
is the curvature value achieved using duty cycling [19]. The
curvature value ranges from 0 to κmax where κmax is an
experimentally derived parameter dictated by the mechanical
properties of the needle and the tissue in which it is being
inserted.

Let Π = {q0,q1, . . . ,qn−1} be a motion plan specified
by a sequence of n configurations representing a continuous
path in the needle’s configuration space. A motion plan is
collision-free if the steerable needle does not intersect any
voxel x for which Mcost(x) =∞. More formally, we denote
the set of intersected voxels in a single step as

Vi = VoxelsIntersected (qi,qi+1) .

The set of all voxels intersected along a path is VΠ =
∪n−2
i=0 Vi. A motion plan Π is collision-free when Mcost(v) <
∞ for all v ∈ VΠ. We define the cost of a motion plan Π as

Cost (Π) =
∑
v∈VΠ

Mcost (v) . (1)

Our objective is to find a collision-free motion plan for
the steerable needle from a starting configuration qstart to
a goal configuration qgoal which minimizes cost. We note
that pgoal is specified while Rgoal is not, because as long
as the needle tip reaches the goal position, the biopsy is a
success, so there is no need to specify the goal orientation.
We represent the steerable needle’s kinematics (including
the constraint of maximum curvature on the path) using the
general inequality g(Π) ≥ 0. Finally, the motion planning
problem can be formulated as:

Π∗ = argmin
Π

Cost(Π)

Subject to :

Mcost(v) <∞ for all v ∈ VΠ

g(Π) ≥ 0

q0 = qstart

pn−1 = pgoal

(2)

where Π∗ is an optimal motion plan.

IV. METHOD

Our method first generates the pulmonary cost map based
on the CT image. Then, given a starting needle pose and goal
position in the lung, the motion planner computes motions
for the steerable needle that connect the starting pose with
the goal position while avoiding all obstacles, minimizing
damage to the patient, and enforcing maximum curvature
constraints associated with the needle’s kinematics. As time
allows, the motion planner computes more paths, and the
path is selected that minimizes the path’s accumulated cost
in Mcost while satisfying constraints according to (2).

A. Computing the Pulmonary Cost Map from a CT Image

Fig. 3 shows the overall pipeline for extracting the pul-
monary cost map Mcost. To construct Mcost, our method
first sets the cost for voxels inside obstacles to infinite cost,
and then sets the rest of the voxels to a cost representing their
vesselness response. We discuss below how we segment the
various structures of the lung and incorporate them into the
pulmonary cost map.

1) Lung Boundary: We segment the lung boundary using
a seeded 3D region growing method. This method grows
a region from a user-selected seed point inside the lung
parenchyma (for in vivo lungs) or inside the background
region (for ex vivo lungs) until the lung boundary is en-
countered. This approach is effective in segmenting the
lung boundary since there is a significant voxel intensity
difference between the lung parenchyma and the surrounding
regions (e.g., tissues outside an in vivo lung or the tray
and air outside an ex vivo lung). Since region growing may
exclude certain structures within the lung due to their higher



Fig. 3. The pipeline for segmenting the anatomy to create the pulmonary
cost map Mcost. We assign voxels inside obstacles a cost of ∞. Vasculature
is categorized into large and small blood vessels, with large vessels treated
as obstacles and the remaining vessels assigned costs between 0 and 1.

voxel intensities (e.g., major blood vessels and bronchial
tubes), we apply a morphological closing procedure to fill
these cavities, which yields a segmentation of the volume of
the lungs. We treat each voxel x external to the lungs as an
obstacle by setting Mcost (x) =∞.

2) Bronchial Tree: To segment the bronchial tree, we
begin by leveraging the fact that bronchial tubes contain
air, so the interior of the bronchial tubes have low intensity
voxels in the CT image. We use a local minima map which
indicates, for each voxel, how much lower its intensity is
compared to the maximum intensity in its neighboring area
of a certain size. We construct local minima maps at multiple
scales, enabling us to extract the airway of bronchial tubes
of different sizes. Finally, we grow the airway structure to
incorporate the tissue that composes the bronchial tube walls.

More specifically, we compute the local minima maps
based on ideas from [12]. We perform grayscale morpho-
logical operations in a slice-by-slice manner. Usually in CT
images, voxel size is structured such that s3 > s1 = s2, so
slices are extracted along the z-axis to get square pixels.
First, we apply a 4-connected neighborhood averaging to
suppress noise. Then for a 2D image slice Is, we perform
the following grayscale reconstructing operations to compute
a local minima map slice Ls:

Jn0 = Is •Bn = (Is ⊕Bn)	Bn, n = 1, 2, . . . , N,

Jnk+1 = max (Jnk 	B1, Is) , k = 0, 1, . . . , kmax

Dn = Jnkmax
− Is,

Ls = max
n

(Dn) ,

where •, ⊕, and 	 are grayscale morphological closing,
erosion and dilation respectively; max () computes a pixel-
by-pixel maximum; − computes a pixel-by-pixel difference;
Jnk is an intermediate image in the kth iteration when doing
grayscale reconstruction on scale n; B1 is a 4-connected
binary structuring element (SE), and Bn = nB1 = B1 ⊕
B1 · · ·⊕B1 (n−1 dilations); N is the number of SEs applied,
where the maximum reconstruction scale we use is N = 12;
Jnkmax

is an image obtained and kmax is the total number
of iterations when Jnk has reached idempotency; and Dn is

Fig. 4. Results of bronchial tree segmentation. (a) Major airway A; (b)
refined airway Apost; (c) reconstructed airway wall W .

the difference map of scale n, containing bright clusters of
pixels that mark the location and depth of the local minima
in slice Is. We then obtain a 3D local minima map, denoted
as L, by stacking the 2D Ls back together.

From a seed point in the trachea, we then perform adaptive
region growing in L to segment the major airway region A
(see Fig. 4(a)). To refine the segmentation, we then use the
following post-processing step

Itmp(x) =

{
I(x), x /∈ A
r, x ∈ A

Lpost = Itmp •B1 − I,

where r is a replacing intensity, which is 0 in our exper-
iments. We then apply adaptive region growing in Lpost

to obtain a refined segmentation of the airway, denoted as
Apost (see Fig. 4(b)). This, however, results in a segmentation
of the internal volume of the bronchial tree. Because the
bronchial tube walls can be non-trivially thick, we must
then reconstruct the airway wall region W . We do this by
growing outward from Apost. W first includes all neigh-
boring voxels of Apost. Then, in a layer-by-layer manner,
we include voxels whose absolute intensity is above some
threshold Tabs = −600 and for which the maximum intensity
difference from neighboring voxels that are already included
in W is below another threshold Tdif = 10. Fig. 4(c) shows
the reconstructed airway wall W . In the cost map, for each
voxel x ∈W ∪Apost we set Mcost (x) =∞.

3) Vasculature: In the CT image, we assume blood ves-
sels present as cylindrical shapes, where the pixel intensities
on the cross-section of the cylinder appear as a 2D Gaussian
distribution. Our goal is to compute a “vesselness” response
for each voxel of the image, where a higher vesselness
response value corresponds to a higher likelihood that the
voxel contains a vessel. We compute the vesselness response
by applying Hessian-based filters to the image to discriminate
vessel-like structures from other structures. We employ a
multi-scale strategy to consider blood vessels with different
radii and to identify the large blood vessels. For voxels
contained in the large blood vessels, we set Mcost to infinity
since large blood vessels are obstacles. For all remaining
voxels inside the lung boundary, we set Mcost to the com-
puted vesselness response to indicate the risk associated with
traveling through the small blood vessels.

We compute vesselness response for voxels in the lung



using a combination of methods building upon the Hessian-
based filter proposed by Frangi et al. [15]. The eigenvalues of
the Hessian matrix at each voxel can be used to distinguish
points inside and outside a curvilinear structure. Our vessel-
ness response function uses these eigenvalues to determine
the local likelihood of the presence of blood vessels at each
voxel. To compute the Hessian matrix H (x;σ), in which
we need second derivatives of I (x), we use the second
derivatives of a Gaussian [15]. For example,

Ixx (x;σ) = σ2γI (x) ∗
{
∂2

∂x2
G (x;σ)

}
, (3)

where ∗ denotes convolution, G (x;σ) is the isotropic Gaus-
sian function with standard deviation σ [mm], and parameter
γ was introduced to define normalized derivatives in [41].
Here we set γ to 1 for scale invariance. The Gaussian allows
us to both reduce noise and to tune the filter response to the
specific radii of blood vessels, corresponding to the standard
deviation of the Gaussian.

Let λ1, λ2 and λ3 be the eigenvalues of H (x;σ), where
|λ1| ≤ |λ2| ≤ |λ3|. As in [15], three measures are computed:

RA =
|λ2|
|λ3|

, RB =
|λ1|√
|λ2λ3|

, S =
√
λ2

1 + λ2
2 + λ2

3.

RA and RB account for the deviation from plate-like and
blob-like structures respectively, and S is the Frobenius norm
of the Hessian. Then the vesselness response is computed by

R(x;σ)=

{
0, λ2 ≥ 0 or λ3 ≥ 0(
1−exp

(
−R2

A

2α2

))
exp

(
−R2

B

2β2

)(
1−exp

(
−S2

2c2

))
, else

where the sensitivity control parameters are α = 0.5, β =
0.5, and c = 70 in our experiments. As analyzed in [15],
vesselness response is maximized when the vessel radius
approximately matches σ. Thus, to compute vesselness re-
sponse for blood vessels with different radii, we compute the
vesselness response at multiple scales. The γ−normalization
in (3) balances the response of different scales, ensuring
responses of different scales have comparable ranges.

We also adapt the multi-region method in [42] to allow us
to apply the above methods separately to different regions of
the lung. Denote S as a set of σs for multi-scale vesselness
response computation. When S contains a σ that is much
larger than the radius of the vessels lying in the region, the
vesselness response is too large at voxels corresponding to
spaces between thin vessels that are close to each other. This
may result in blurring of small vessels caused by excessive
smoothing due to Gaussian filtering with a large σ. To
address this issue, we apply large σs only to the center
regions of the lung where the vessels are thicker. This allows
us to more accurately represent small vasculature than if we
apply the above methods uniformly.

Using the set of regions defined in [42], we compute the
vesselness response in each region separately. We have

S =


{1}, 0 < r ≤ 1

{1,
√

2, 2}, 1 < r ≤ 2

{1,
√

2, 2, 2
√

2}, 2 < r ≤ 2
√

2

{1,
√

2, 2, 2
√

2, 4}, 2
√

2 < r

(4)

Fig. 5. For the pulmonary cost map, our method based on vesselness
response (right) provides more detailed information about the vasculature
relative to using only pixel intensities from the CT image (left), where we
visualize higher intensities using darker voxels. We highlight corresponding
regions using boxes of the same color.

where r is the distance in mm between a voxel and its nearest
lung surface. We define the vesselness response as

R (x) = max
σ∈S

R(x;σ), (5)

then take the resulting vesselness responses from each region
and apply the value directly in Mcost. A benefit of computing
vesselness response based on second derivatives is that it
can identify vessel structures well in regions of varying
intensities (see Fig. 5) by relying more on relative intensity
rather than absolute intensity.

Because there are large blood vessels in the lung that
the needle must always avoid, we need to include vessels
larger than a certain radius in the set of obstacles. With
the previous vesselness response function, frequently a voxel
will have a high response to multiple σs, making it difficult
to identify large blood vessels. To address this, we apply
a different Hessian-based filter modified from [42]. The
vesselness response function for large vessels is then defined
as

RL (x;σ) =

{
0, λ2 ≥ 0 or λ3 ≥ 0

−λ2

Iref−max (I(x),Imax) , else

where we have Iref = 300 and Imax = 200. Equations
(4) and (5) are then applied as before using RL. This
multi-scale vesselness response computation allows us to
identify the approximate radius of a vessel based on which
σ corresponds to the maximum response produced by the
voxels corresponding to the vessel. Let σ(x) be the σ to
which voxel x has maximum response. Thus according to a
user defined rvessel and response threshold RT , we segment
out voxels with σ(x) ≥ rvessel and R(x) ≥ RT as candidate
regions of large blood vessels. In this work, we use rvessel =
2
√

2 [mm] and RT = 400. We then denoise the results
by removing candidate regions with volume less than 1000
voxels. We assign an infinite cost in Mcost for the remaining
candidate regions. See Fig. 1 for an example of Mcost.

B. Motion Planning for the Steerable Needle in the Lung

After constructing the pulmonary cost map, we are ready
to plan motions for the steerable needle in the lung. Given a
starting needle pose and a goal position, we compute many



Fig. 6. A comparison of the accurate collision detection and the faster
approximate collision detection strategy in 2D. For both figures, obstacles
are shown in gray, voxels that need to be checked have red boundaries,
collision-free steps are shown in blue, and in-collision steps in orange.
Left: Accurate collision detection, wherein many voxels are checked during
collision detection. Right: Approximate collision detection, where only
voxels that the end points fall into are checked. Voxels resulting from the
inflation are shown crossed, collision-free ending points are shown in green,
otherwise in red.

motion plans iteratively as time allows. At each iteration, we
generate a single motion plan for the needle that connects
the starting pose with the goal point and ensures no part of
the path collides with an obstacle. We then compute the cost
of the path based on Mcost. If the cost is less than that of any
path we have found previously, we keep it as the best path.
This continues in an anytime fashion, allowing our method
to find better and better paths as computation time allows.

The motion planner that runs at each iteration of the
method requires as input (1) Mcost, (2) the needle’s ra-
dius rneedle, (3) the needle’s maximum achievable curvature
κmax, (4) voxel size Svoxel, and (5) a starting pose qstart ∈
SE(3) and a goal site pgoal ∈ R3.

We utilize an adaptation of the motion planner presented
in [8]. The planner incrementally builds a tree of robot states
that are reachable from qstart by collision-free paths. During
the tree construction, the planner samples a point in R3, and
selects the nearest state qnear in the tree to the sampled point.
It then computes a control u which when applied to qnear

steers the needle toward the sampled point up to a distance
defined by the step size t, resulting in a state qnew. If edge
(qnear, qnew) is collision-free, then qnew is added to the
tree. This proceeds until the goal position is reached or the
allotted computation time is exceeded.

We further adapt the motion planner in [8] to achieve fast
collision detection with respect to the obstacles. To do so,
the pulmonary cost map is modified by taking the needle’s
radius and a safety margin into consideration. Recall that
the needle tip radius is rneedle and denote a user defined
safety margin as rsafe. If we finely discretize the path the
needle takes through the lung, the footprint of a single step
can be approximated as a capsule (the volume described by
linearly sweeping a sphere) parameterized by step size t
and radius rtotal = rneedle + rsafe. To perform completely
accurate collision detection, we would check every voxel
that the capsule intersects to see if it is an obstacle (see
Fig. 6), requiring a large amount of computation. To achieve
faster collision detection, we conservatively approximate this
operation by inflating the obstacles by ai =

⌈
rtotal

si

⌉
, i =

1, 2, 3. The resulting a1, a2, a3 describe the size of an ellip-
soid measured in number of voxels. The inflating operation
can then be performed by morphological dilation on a
binary obstacle map defined by the infinite cost voxels in

Mcost. Morphological dilation is an approximation of the
Minkowski sum which can be quickly computed on sets of
voxels. The voxels corresponding to the inflated obstacles are
then assigned infinite cost in Mcost. After the obstacles in
Mcost are so inflated, we then treat the needle tip as a point
robot, checking only the voxels at which a step ends (see
Fig. 6). This allows the collision checking to be done by a
simple array lookup. As a trade-off, the motion planner must
then be constrained by the maximum step size. We compute
the maximum step size by

dmax = min
i=x,y,z

(aisi)

tmax = 2
√

(dmax)2 − r2
total

where dmax is the allowed maximum distance from the
center of a sampled point to points inside the footprint.
That is to say, as long as the step size is smaller than tmax,
this approximate collision detection provides a conservative
substitute to the accurate collision detection.

V. RESULTS

We first evaluate our constructed cost map Mcost using
example CT images of in vivo human lungs from the
VESSEL12 challenge [9]. In this data set, involving three
CT scans, there are a total of 882 manually segmented
points, among which 281 points are identified as belonging
to vasculature. We evaluate our automatically generated cost
map’s ability to correctly identify both true positives and true
negatives with respect to the manually segmented points.
We use the F1 score, defined as F1 = (2 × Precision ×
Recall)/(Precision + Recall), to evaluate the results. Our
method achieves a maximum F1 score of 0.9709 averaged
across the three scans, validating our cost map.

We evaluate the motion planner in a simulated lung
scenario, using a cost map automatically extracted from
the CT image of an ex vivo porcine lung. We generate
three scenarios of varying difficulty which consist of a
staring pose qstart and a goal position that is within the
theoretical reachable workspace of the needle defined by its
maximum curvature value. In our experiments κmax is set as
(0.121m)−1, a value experimentally derived in prior work
[43]. We compare the following methods:

(1) Steerable Needle RRT with Cost Map: This is the
motion planning method proposed in this paper, which builds
an RRT with only collision-free states and selects paths based
on the optimization formulation in (2).

(2) Steerable Needle RRT: Consistent with prior needle
steering work, in this variant we avoid obstacles (using Mcost

only for collision detection) and select the path with the
shortest length.

(3) Voxel Intensity RRT: In this variant we use the original
medical image as a cost map, ensuring that all intensity
values are positive by adding −min (I (x)) to the intensity
of all the voxels.

We compare the performance of the different methods
from two perspectives: the ability of the method to find a
collision-free path quickly, and the quality of the resulting



paths. For each scenario we ran the methods 10 times with
different random seeds and allow the methods to execute for
500 seconds per run. We then average the results over the
10 runs. The final path cost for a path was computed using
(1). A run is considered successful if the method returned
a collision-free path before the time limit. The results are
shown in Fig. 7.

The results show that our method, Steerable Needle RRT
with Cost Map, is not only capable of finding collision-free
paths quickly, but also shows an advantage over other meth-
ods in resulting path cost, both in the short and long term.
Also note that the behavior of our method in a single run is
such that the path cost decreases monotonically, resulting in
better and better plans over time. The increase in the average
cost value for our method shown early in Scenario 3 is due
to the averaging of path costs over multiple runs in which the
first valid path returns later in some runs. When comparing
against Steerable Needle RRT without the cost map, our
method in most cases results in path costs that are 50% lower,
indicating that many fewer small vessels are punctured. Our
method also performs well when compared against the Voxel
Intensity RRT, generating successful paths more quickly in
the medium and hard difficulty scenarios, and with improved
average cost across all scenarios. This improvement shows
that computing the cost map using our image processing
method yields better motion planning results compared to
only using pixel intensities of the raw CT image.

VI. CONCLUSION

We presented a method for extracting a cost map auto-
matically from pulmonary CT images, and utilize the map
to efficiently plan safe motions for a steerable needle through
the lung. The cost map encodes obstacles that must be
avoided, including the lung boundary, bronchial tubes, and
large blood vessels. The cost map additionally formulates
a cost for the rest of the lung which corresponds to an
approximate likelihood that a blood vessel exists at each
location in the anatomy. We then presented an efficient
motion planning approach that uses the cost map to generate
paths that minimize accumulated cost while safely reaching
a goal location in the lung. The method performs in an
anytime fashion, improving the quality of the motion plan
as computation time allows.

In future work, we plan to extend our approach to en-
able automatic motion planning for not only the steerable
needle but also additional phases of the lung biopsy robot’s
deployment, including bronchoscope deployment and control
over the needle’s angle of entry into the parenchyma [8]. We
also plan to explicitly consider lung motion and evaluate our
methods with experiments in ex vivo porcine lung tissue.
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