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Abstract—Fitts’ Law specifies a logarithmic relationship be-
tween motion duration and the ratio of target distance over
target size. This paper introduces two large open-access datasets
from experimental user studies, first a controlled (in-lab) study
with 46 participants, and second an uncontrolled online study
using a Java applet. We present a succinct derivation of the
square-root variant of Fitts Law using optimal control theory
and compare three models that relate motion duration to the
ratio of target distance over target size: LOG (Fitts’ original
logarithmic function), SQR (square-root), and LOG’ (McKenzie’s
logarithmic plus 1.0). We find: (1) the data from the controlled
and uncontrolled studies are consistent; (2) for homogeneous
targets (with fixed size and distance), the SQR model yields a
significantly better fit than LOG or LOG’, except with the most
difficult targets (where the ratio of target distance over target
size is large) where the models are not significantly different; and
(3) for heterogeneous targets (with varying size and distance),
SQR yields a significantly better fit than LOG for easy targets
and LOG yields a significantly better fit for targets of medium
difficulty, while the LOG’ model yields a significantly better
fit than both LOG and SQR on very difficult targets. The
anonymized datasets including 94,580 human reaching motion
timing measurements are, to our knowledge, the largest collected
to date.

Index Terms—Fitts’ law; human-computer interfaces; time and
motion studies; human movement time

I. INTRODUCTION

The design of almost all human interfaces, from comput-
ers to cellphones to games to assembly lines, can benefit
from intuitive mathematical models of human motion and
ergonomics. The tradeoff between speed and accuracy in
human reaching movements was studied by Paul Fitts in 1954
[1]. Fitts considered reaching movements between rectangular
targets, which arise in industrial settings for tasks ranging from
installing parts on an assembly line to stamping envelopes in
an office. In a series of human studies, subjects repetitively
moved a stylus between two fixed metallic contact plates as
quickly as possible for 15 seconds. Fitts measured the time
T required to move back and forth between the targets for
16 human volunteers, recording how timing changes with
the width W of the plates and the amplitude (distance) A
between them. Influenced by Shannon’s Information Theory,
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Fig. 1. The Java applet presented human subjects in our lab and online
with a sequence of rectangular and circular targets and records timing data.
Target distance A and width W remain constant (homogeneous) or vary
(heterogeneous) between targets.

Fitts empirically fitted a logarithmic model to the data yielding
the now-classic “Fitts’ Law”.

Since 1954, many researchers have repeated these experi-
ments under varying conditions and proposed alternate models
and derivations. Most researchers focus on two-parameter
models, which are intuitive for designers but do not capture all
of the nuances of human velocity profiles which include higher
order terms (and in many cases reversals and overshoots).

This paper also focuses on two-parameter models and
presents two large datasets. Meyer et al. considered Fitts’
original data and performed additional experiments with four
human subjects performing wrist rotation movements to het-
erogeneous targets which suggest that in some cases the
square-root model is superior to the logarithmic model. To
explore this hypothesis, we designed and implemented a Java-
based applet that can be run from any browser on the Internet.
Meyer et al. proposed a Stochastic Optimized-Submovement
(SOSM) derivation [2] of the Square-Root variant, summarized
in section II-D. We also present a succinct derivation of the
Square-Root variant based on optimal control theory.

The datasets and Java applet are available online at
http://automation.berkeley.edu/fitts/. The applet presents the
visitor with a sequence of visual targets to click on, records
completion times, and sends the data back to our lab. We
used this applet for two user studies. The first is a controlled
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(in-lab) study with all volunteers using the same mouse and
settings. Our second study is an uncontrolled, web-based study
based on an indeterminate number of volunteers who visited
the website (it is possible to visit more than once) using
a variety of mouse types and settings. Uncontrolled studies
make it difficult to obtain reliable data about subjects and
it is hard to know if they repeat the experiment multiple
times. Andreasen et al. [3] note that “it would be interesting
to perform comparative studies of remote usability testing
methods” against controlled studies.

Our uncontrolled study was motivated by concerns that
results might vary between a controlled lab setting and web-
based settings with many different experimental environments.
We were surprised to find that data from the controlled and
uncontrolled studies are consistent.

II. RELATED WORK

A. Classic Fitts’ Law

In “choice reaction time tasks,” a set of stimuli are as-
signed unique responses, and participants must give the correct
response when receiving the stimulus [4]. In 1885, Merkel
designed an experiment in which the stimulus was a number
selected from a set with uniform probability; the participant
was required to press a key corresponding to the number [4].
Merkel found that reaction time increased by a constant for
every doubling of the size of the set.

In 1948, Claude Shannon published the foundational paper
on Information Theory, defining the information capacity for
a communication channel, C, as:

C = B log2

(
S +N

N

)
, (1)

where B is the channel bandwidth, S is signal strength, and
N is noise power. Shannon also defined the information I of
a symbol based on the probability of receiving the symbol,
I = log2

1
p .

Adopting Shannon’s model, Merkel’s reaction time can
be viewed as proportional to the amount of “information”
received by the participant:

TR = a+ b log2M (2)

where a and b are experimentally determined constants and
M is the size of the set of integers.

Hick’s Law models the reaction time in the cases that there
are more than one target. Hick proposes a model in which the
reaction time for when the person has to choose between a
set of options is modeled as a logarithmic model [5, 6]. In
this model the reaction time as a logarithmic function of the
number of choices M is T = α+ β log2(M).

In 1953, Hyman extended the work of Hick and Merkel to
cases where an element i in the set of possible integers was
selected with non-uniform probability pi [7]. Hyman found
that the average reaction time was also consistent with the
Shannon’s model [4].

In 1954, Fitts hypothesized that the information capacity
of the human motor system is specified by its ability to
produce consistently one class of movement from among

several alternative classes of movements [1]. Fitts then defined
the difficulty of a task based on the minimum amount of “in-
formation” required to complete it on average. For the “tapping
task”, Fitts defined a tap between two targets each of width
of W separated by distance (amplitude) A as a movement
class. Inspired by Shannon’s definition of information, Fitts
defined the “index of difficulty” (I) based on the “information”
transmitted during the task:

I = log2

(
2A

W

)
. (3)

Fitts noted that the choice of the numerator for this index
“is arbitrary since the range of possible amplitudes must be
inferred,” so 2A was selected rather than A to ensure that the
index is positive in “all practical situations.”

Fitts then modeled movement time T as a linear function
of the “information” transmitted, producing his classic two-
parameter Logarithmic model:

T = a+ b log2

(
2A

W

)
. (4)

In this paper we refer to this as the LOG model.
Although Fitts’ Logarithmic model was originally devel-

oped for industrial pick-and-place tasks [1], it has been applied
to a variety of human reaching movements. Card, English, and
Burr applied Fitts’ Logarithmic model to Human Computer
Interaction and studied response times for four input devices:
mouse, joystick, step keys, and text keys [8]. They found
that Fitts’ Logarithmic model accounts for the variation in
movement time to select text on a CRT monitor using mice
and joysticks. Subsequent studies applied Fitts’ Logarithmic
model to pen input devices [9], Fitts’ Logarithmic model has
also been applied to robotics applications including telema-
nipulation tasks with remote video viewing [10], and pairs of
participants performing tapping motions using a robot manip-
ulator [11]. Kristensson proposes using context information,
such as pattern recognition of likely key presses on a stylus
keyboard, to develop input devices that increase the speed of
input beyond what would be predicted by Fitts’ Logarithmic
model [12].

B. Variants of Fitts’ Model

In 1960, Welford proposed a revised model based on a
Weber fraction where the user must select “a distance from
a total distance extending from his starting point to the far
edge of the target” [13, 14]. For some constant b, Welford’s
formulation is given by:

T = b log

(
A+ 1

2W

W

)
= b log

(
A

W
+ 0.5

)
. (5)

In 1992, MacKenzie developed a variation on Fitts’ model
that is more closely aligned with Shannon’s model [15].
MacKenzie’s communication channel model considers noise
N to be the variation around a specific signal S, so the signal
strength equals the movement amplitude (S = A) and the
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noise equals the width (N = W ). By analogy to Shannon’s
model (equation 1), movement time is given by:

T = a+ b log2

(
A

W
+ 1

)
. (6)

In this paper we refer to this as the LOG’ model. Other
researchers such as Crossman and Welford [14] explore alter-
native variants of Fitts’ model using communication theory.

Plamondon and Alimi review a number of studies of
speed/accuracy trade-off models and their applications [16].
They categorize the experimental procedures used for the
speed/accuracy trade-offs into two different categories: spa-
tially constrained movements and temporally constrained
movements. For the procedures in the first category, distance
(A) and the width (W ) are usually given and the time (T ) is
measured. In the temporal group, movement time is given and
the accuracy of reaching the target is being measured. With
this definition, Fitts’ Law falls into the first category. They
classify different studies on the Fitts’ Logarithmic model based
on different types of movements (tapping, pointing, dragging),
limbs and muscles groups (foot, head, hand, etc), experimental
conditions (underwater, in flight, etc), device (joystick, mouse,
stylus, touchpad, etc), and participants (children, monkeys,
adults of different ages, etc). Hoffmann and Hui study reaching
movements of fingers, wrist, forearm and shoulder. They show
for the cases where an operator can choose which limb to reach
a target, the limb with the smallest mass moment of inertia is
often used to minimize energy needed to reach the target [17].

Other variants of Fitts’ Model consider properties of the
neuromuscular system, such as minimizing jerk or a sequential
impulse model. Crossman and Goodeve [18] proposed a move-
ment time model based on a sequence of discrete positional
corrective motion impulses, which resulted in a Logarithmic
model like Fitts’ law.

Flash and Hogan show that the minimization of the jerk
model is equivalent to fitting to a fifth order polynomial
[19]. They developed a mathematical model of voluntary
reaching movements based on maximizing the smoothness of
trajectories [19]. They propose that the human motor system
minimizes jerk, the derivative of acceleration. Using calculus
of variations, they derive a polynomial formula for the time
integral of the square of the magnitude of jerk is

C =
1

2

∫ tf

0

n∑
i=1

((
d3xi
dt3

)2
)
dt (7)

where n is the dimension of the space, x is the vector
coordinate of the pointer as a function of time, and tf is the
time to reach the end point. Minimizing this formula results
in 5th order polynomials with 6 unknown parameters for each
dimension. One can constrain the position of the start and end
points and assume the velocity and acceleration are zero at
the start and end of the movement, and then solve for the
parameters. The resulting trajectories have smooth position
and velocity curves qualitatively similar to experimentally
measured data.

Ben-Itzhak and Karniel also model arm reaching move-
ments using jerk as a control signal and obtain minimum
acceleration trajectories using bang-bang control [20]. Yazdani

et al. present an alternative approach to achieving minimum
jerk trajectories using a bang-bang controller that has no free
parameters [21]. These jerk-based models are highly accurate
when compared to recorded human movements but do not
explicitly consider the effect of varying the size of a target
region.

In 1988, Hoffmann and Gan proposed a model for ballistic
arm movements in which the movement time is only a function
of the amplitude, T = a + b

√
A [22]. In 1992, Réjean Pla-

mondon proposed an alternative to Fitts’ Logarithmic model
using a neuromuscular impulse response model [23, 24, 25].
Plamondon’s theory for rapid human movements is based on
the synergy between the agonist and antagonist neuromuscular
systems [24]. In his model, the agonist and antagonist systems
synchronously receive an impulse input U0(t− t0) at time t0
scaled by Di, where i = 1 for the agonist system and i = 2 for
the antagonist system. Each system independently responds in
parallel to the input with impulse response functions Hi(t)
to generate output velocities vi(t) for i = 1, 2. Although the
two systems may be coupled in reality, Plamondon assumed
the output v(t) of the synergy is obtained by subtracting
the two parallel outputs. Plamondon proposed defining the
impulse response using a log-normal function, a very general
formulation based on 7 parameters that can qualitatively
predict a variety of velocity profiles including single peaks,
double peaks, triple peaks, asymmetric peaks, and multiple
peaks with no zero crossing. Reaching movements from one
point to another point terminate at a time T when the velocity
of motion v(T ) equals zero. Solving the velocity equation for
the zeros using constraints set by Fitts’ experiment, Plamondon
modeled movement time

T = K

(
2A

W

)α
(8)

with parameters K and α.
Equation 8 defines a power model, an alternative two-

parameter formulation based on a fitted log-normal approx-
imation of the velocity profile.

Harris and Wolpert assume that the variance of the noise in
the neural control signal increases with the magnitude of the
control signal. They show that a smooth movement trajectory
is the result of minimizing the variance of end-point position in
an open-loop control mechanism [26, 27]. Tanaka et al. (2006)
extend the model proposed by Harris and Wolpert. Their model
is based on optimizing movement time while maintaining
predetermined level of accuracy [28]. More recently, Qian et
al., applied an infinite-horizon optimal feedback model to goal-
directed arm movements and derive both the log and power
forms of Fitts’ law [29].

C. Fitts’ Model for 2D motions

Fitts’ Logarithmic model, which was originally developed
for one-dimensional reaching movements, has been extended
to the two-dimensional movements that are common in graph-
ical user interfaces [30, 31]. For general two-dimensional
targets, both the shape of the target and angle of approach
must be considered. For circular targets, the assumptions of the
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one-dimensional model remain largely intact with target width
W being defined by the circle’s diameter1. For rectangular
targets, Card et al. propose a model in which the width of
the target is the only contributing factor to the parameter W
and the height is ignored. This model can result in a negative
index of difficulty for near wide targets [31, 8]. MacKenzie
et al. proposed two models for rectangular targets [30]. The
smaller-of model sets W to the smaller of the target width or
height. The effective width model sets W by considering an
additional parameter: the angle between the start point and the
target center. MacKenzie tested the status quo, smaller-of, and
effective width models and found that the linear correlation of
movement time to Fitts’ index of difficulty was significantly
greater for both the smaller-of and effective width models
compared to the status quo model [30].

Friedlander et al. found that a linear model for movement
time fits selection in a non-visual (tactile or auditory) bullseye
menu more closely than Fitts’ Logarithmic model [32]. Gillan
et al. examined how Fitts’ Logarithmic model can be applied
to point-drag movement sequences rather than simply point-
click operations. They found that Fitts’ Logarithmic model
must first be applied as the user points to the left edge of
the text object and then applied separately for the dragging
distance [33].

Accot et al. investigated extensions for Fitts’ Logarithmic
model for trajectory-based interactions, such as navigating
through nested menus, drawing curves, or moving in 3D
worlds [34]. They developed a “steering law” similar to Fitts’
Logarithmic model except the index of difficulty for steering
a pointer through a tunnel is defined by the inverse of the
width of a tunnel integrated over the length of the tunnel. They
applied the steering law to participants using 5 input devices
(tablet, mouse, trackpoint, touchpad, and trackball), and the
linear correlation of movement time to the index of difficulty
for steering exceeded 0.98 [35].

Apitz et al. introduce a crossing-based interface called
CrossY2 [36]. For selecting an action in CrossY a target
button is crossed instead of clicked on. This fundamentally
changes both the interaction and the equations for modeling
the movement since the pointing device does not necessarily
need to stop on the target to click on it. Apitz et al. show that
a crossing task is as fast as, or faster than a point-and-click
task for the same index of difficulty [36].

Wobbrock et al. derive a predictive model for error rates
instead of mean times [37]. Error rate models have practical
applications in designing text entry devices and video games
[37]. Hoffmann and Drury adjust the target width W by
considering the width of the target, its proximity to another
target and the width of the finger [38]. They show that in the
case that two keys are adjacent to each other and the width
of the finger pad is larger than the clearance between the two
keys, W can be replaced by “Available W ” whose value is
Wavail = 2S − W − F , where W is the target size, F is
the width of the finger pad on the device, and S is the target
center spacing.

1In this paper we use the diameter of circular targets for W as suggested
by MacKenzie [31].

2http://www.cs.umd.edu/hcil/crossy/

The computer mouse and other pointing devices usually
offer configurable parameters that adjust the mapping between
movement of the device and movement of the cursor on the
screen. The most common adjustment is mouse speed, a type
of “control-display gain” [39]. The control-display gain scales
the distance d the mouse moves on the table to a distance p
in pixels that the cursor moves on the screen. The setting of
the gain can have a significant impact on movement time to
a target. Thompson et al. experimentally verified that lower
gains are better for low amplitude or small target movements
while higher gains are better for large amplitude or large
target movements [40]. This mixed result makes it difficult
to select a single optimal gain for standard computer usage.
Blanch et al. introduce semantic pointing, a technique that
improves target acquisition by decoupling the visual size of
a target from the motor size of the target by dynamically
adjusting the control-display gain when the cursor moves
over a target [41]. Other device configuration parameters
include acceleration and threshold [39]. When the mouse speed
exceeds the threshold, the control-display gain is scaled by the
acceleration parameter. Recent operating systems commonly
use more complex mouse acceleration models and multiple
thresholds [42].

D. The Square-Root Variant of Fitts’ Model

Several researchers have considered a two-parameter
square-root model:

T = a+ b

√
A

W
. (9)

In this paper we refer to this as the SQR model. Meyer et
al. proposed the Stochastic Optimized-Submovement (SOSM)
derivation of the SQR model [2]. Kvalseth and Meyer et al.
noted that the SQR model behaves similarly to the logarithmic
model in the standard range of index of difficulty [43, 2].
Meyer et al. used the homogeneous target data from the
original Fitts’ paper [1], and showed that the SQR model fits
the original data better than the LOG model [2]. Meyer et al.
also performed experiments with 4 human subjects performing
wrist rotation movements to heterogenous targets with similar
results.

Meyer et al. derive the time T to reach the target as the
sum of the average time for the primary submovement T1
and for the corrective submovement T2. They estimate T by
minimizing its derivative with respect to the submovements
and show that when A/W > 4/z

√
2π, the value of T can be

approximated by the SQR function, where z is the z-score such
that 95% of the area under a standard Gaussian distribution
N(0, 1) falls inside (−z, z).

This derivation is based on the assumption that reaching
motion can be partitioned into two or more submovements,
a primary ballistic submovement and secondary corrective
submovements, with near-zero velocity at the transition. The
derivation is not exact and is based on four strong assump-
tions: 1) two submovements with a stop between them, 2)
submovement endpoints have Gaussian distributions around
the center point of the target, and 3) the standard deviation of
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each Gaussian is linearly related to the average velocity during
that submovement, and 4) there are strong numerical bounds
on values of A and W for which the approximation holds.

There are several other drawbacks to this derivation [44].
As Meyer et al. note, if the participant reaches the target in
a single movement, the derivation collapses to a linear model
which fits the data very poorly. The approximation requires nu-
merical bounds on values of A and W . Furthermore, Guiard et
al. note that for a fixed positive value of A/W Meyer’s model
approaches 1 as the number of submovements n approaches
infinity [45, 44]. Meyer et al. evaluated their model with one-
dimensional movements using wrist rotation of a dial that can
be rotated to different angular targets. In their experiments, 4
participants are presented with 12 target conditions with A/W
values ranging from 2.49 to 15.57. This range of A/W does
not violate the assumption made for their derivation. Rioul
and Guiard reconsider the Stochastic Optimized Submovement
Theory of Meyer et al. and show that it implies a quasi-
logarithmic model, which is similar but distinct from a square-
root and cube-root law [46].

III. A SUCCINCT DERIVATION OF THE SQUARE-ROOT
(SQR) VARIANT

In this section we present a new derivation for the SQR
variant of Fitts’ Law that models acceleration as (1) piecewise
constant as predicted by optimal control theory for minimizing
movement time, and (2) proportional to target width. The
hypothesis is that wider targets may be perceived by humans
as “easier” to reach and hence have a larger margin for error
and allow for higher accelerations. The piecewise-constant
acceleration assumption facilitates the derivation but it is a
strong assumption and less consistent with empirical trajectory
profiles than a piecewise-constant jerk model.

It is well-known in control theory that the optimal time for
a system to reach a target is obtained by “bang-bang” control,
where maximal positive acceleration is maintained for the first
half of the trajectory and then switched to maximal negative
acceleration for the second half [47, 4].

We define the halfway point (the point reached at the
switching time) for a human to reach a target at distance A
as xmid = A/2. Acceleration as a function of time for bang-
bang control is shown in Figure 2(a), where the switching time
between maximum acceleration and maximum deceleration is
s = T/2.

As shown in Figure 2, acceleration has only two values: full
forward or full reverse, hence the term “bang-bang”. Velocity
is initially zero and then ramps up linearly during the first
phase and ramps down during the second. Velocity is thus
ẋ(t) = ẍt during the acceleration phase (t ≤ s) and ẋ(t) =
ẍs− ẍ(t− s) during the deceleration phase (t > s), where ẍ
is the constant magnitude of acceleration.

We can integrate this linear velocity with respect to time
to get a quadratic function for position x(t). At the switching
time s, the position by integration will be x(s) = 1

2 ẍs
2. By

symmetry, position after time T = 2s will be x(T ) = ẍs2 =
1
4 ẍT

2. For cursor motion, we set the total distance traveled
during movement time T as the amplitude x(T ) = A. Hence,
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Fig. 2. Acceleration vs. Time (a), Velocity vs. Time (b), and Position vs. Time
(c) under symmetric optimal control. The “bang-bang” controller maintains
the maximal positive acceleration in the first half of the motion and then
switches to the maximal negative acceleration until the target is reached (a).
The maximal velocity is reached in the middle of the path (b).

A = 1
4 ẍT

2 which implies

T = 2

√
A

ẍ
. (10)

As stated above, we assume also that acceleration magnitude
is proportional to the width of the target: ẍ = kW where k is
a constant scalar and W is the target width. Substituting into
equation 10, we get

T = 2

√
A

kW
. (11)

We now add an initial reaction time a and let b = 2/
√
k.

The total movement time is then:

T = a+ b

√
A

W
. (12)
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Fig. 3. Velocity vs. Time (a) and Position vs. Time (b) for the asymmetric
acceleration model. Similar to MacKenzie we assume that the velocity profile
is asymmetric and the peak velocity occurs at a switching time s that is not
necessarily equal to T/2 (a) [48].

A. The SQR Variant with Asymmetric Acceleration

In 1987, C. L. MacKenzie showed empirically that velocity
profiles for reaching movements during Fitts’ task are often
asymmetric [48], so in this section we derive a version for
asymmetric acceleration.

In this section we present a modified derivation based on
an asymmetric velocity profile. Let s be the switching time
between the acceleration phase and deceleration phase. The
peak velocity will occur at the switching time. To complete
the reaching movement of amplitude A with ẋ(T ) = 0, the
magnitude of constant acceleration ẍa before time s may be
different from the constant deceleration ẍd after s.

MacKenzie showed that normalized time to peak velocity
s/T increases roughly linearly as target width W increases
and does not depend on amplitude A [48]. We approximate
the normalized time to peak velocity as linearly proportional
to W :

s

T
= kW (13)

where k is a scalar constant. We also assume that initial accel-
eration ẍa for an individual is a fixed maximum acceleration
regardless of the task and the deceleration ẍd is set so velocity
is 0 at time T . The maximum initial acceleration condition
implies |ẍa| ≥ |ẍd|, consistent with MacKenzie’s empirical
observations [48].

To obtain a relationship between T , A, and W , we first
solve for the peak velocity ẋmax = ẍas. The switching time
constraint s/T = kW implies ẋmax = ẍakWT . Integrating
the asymmetric velocity profile in Figure 3(a) with respect to
time, we get position x(t), shown in Figure 3(b).

At time T , position as a function of ẋmax is

x(T ) =
1

2
ẋmaxs+

1

2
ẋmax(T − s) =

1

2
ẋmaxT. (14)

Setting x(T ) = A and substituting ẋmax into equation 14
yields:

A =
1

2
ẍakWT 2. (15)

Hence,

T =

√
2

ẍak

A

W
. (16)

Letting b =
√

2
ẍak

and adding a fixed initial reaction time
a common to all trials for a given participant, we get

T = a+ b

√
A

W
. (17)

Equations 17 and 12 are both binary acceleration models
that were derived based on kinematic assumptions. However
the assumption deriving the two equations are different, the
former model assumes switching time is fixed relative to
T and acceleration is proportional to W while the latter
model assumes switching time is proportional to W and initial
acceleration is a fixed constant.

IV. CONTROLLED AND UNCONTROLLED USER STUDIES

The UC Berkeley IRB approved this human subject re-
search. To compare variants of Fitts’ model, we performed two
user studies, one a controlled (in-lab) study and the second an
uncontrolled (web-based) study. Both studies include two con-
ditions: a “homogeneous targets” condition where sequential
targets are constant in distance and size, and a “heterogeneous
targets” condition where sequential targets are circular and
vary in distance and size. The experiments consider targets of
different difficulty, as defined by the ratio of target distance
over target size as listed in Table 1.

A. The Java Applet

For both the controlled and uncontrolled studies, we im-
plemented a Java applet that asks each subject to complete
two experiments by using his or her cursor to click on a
sequence of rectangular or circular targets as they are pre-
sented on the screen. The Java applet is available online at
http://automation.berkeley.edu/fitts/.

The applet records the time in milliseconds between when
the target appears until the subject clicks on the target. A
subject may click when the cursor is outside the target, but
the timer increments until the target is successfully clicked
upon. To facilitate precise measurement of movement times
without lag from Internet communications, movement times
are measured locally by the applet and sent to our central
server after completion of the trials. We did not attempt
to capture the complete motion trajectory since the client
computer may not have sufficient processing speed when
running other processes to take reliable measurements. Since
the targets are measured in units of pixels, the distance and
size of targets may appear different on computer systems with
different display sizes and resolutions.
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Trial Homogeneous
Targets

Heterogeneous
Targets

A W A/W A W A/W

1 370 50 7.40 67 20 3.35
2 370 50 7.40 184 38 4.84
3 370 50 7.40 280 14 20.00
4 370 50 7.40 230 29 7.93
5 370 50 7.40 144 55 2.62
6 370 50 7.40 249 29 8.59
7 370 50 7.40 255 14 18.21
8 370 50 7.40 96 50 1.92
9 240 10 24.00 225 19 11.84
10 240 10 24.00 263 12 21.92
11 240 10 24.00 259 25 10.36
12 240 10 24.00 229 20 11.45
13 240 10 24.00 215 31 6.94
14 240 10 24.00 198 83 2.39
15 240 10 24.00 301 16 18.81
16 240 10 24.00 194 66 2.94
17 180 70 2.57 260 12 21.67
18 180 70 2.57 296 14 21.14
19 180 70 2.57 180 44 4.09
20 180 70 2.57 278 11 25.27
21 180 70 2.57 283 37 7.65
22 180 70 2.57 40 32 1.25
23 180 70 2.57 233 10 23.30
24 180 70 2.57 191 50 3.82
25 - - - 179 18 9.94

TABLE I
TARGET DISTANCE/AMPLITUDE (A) AND SIZE/WIDTH (W ), IN DISPLAY

PIXELS, FOR THE 24 RECORDED FIXED RECTANGLES (FIXED
RECTANGLES) TRIALS AND 25 VARIABLE CIRCLES TRIALS.

1) Homogeneous Targets Experiment: The Homogenous
set of trials, where pairs of rectangles have the same width
and are a fixed distance apart, is like the one studied in the
original Fitts papers. A sequence of 33 vertical rectangles are
presented as illustrated in Figure 1(a). The first, second, and
third set of the 11 rectangles have the same (homogenous)
width and amplitude. They hence have the same difficulty, as
defined by the ratio of target distance over target size. In other
words after the 11th, 22nd, and 33rd repetition, the width and
amplitude (and difficulty) of the rectangles are changed. To
allow subjects to become familiar with each set, the system
discards timing data from the first 3 timing measurements out
each set of 11, so data from the latter 8 rectangles for each
difficulty are collected, producing 24 timing measurements.

2) Heterogeneous Targets Experiment: This set of trials
focuses on changing targets as might be encountered in a
game or computer human interface. A sequence of 25 circular
targets, each of varying size and position, are presented
sequentially as illustrated in Figure 1(b). Each trial begins
when the subject clicks inside a small “home” circle in the
center of the window and ends when the user successfully
clicks inside the target. Each of the circular targets varies in
distance from the home circle and varies in diameter and hence
in A/W , difficulty level as listed in Table I.

B. Two User Studies

1) Controlled User Study Details: For the controlled user
study, we posted ads on campus and Facebook offering an
Amazon.com gift certificate for participation. 17 female (37%)

and 29 male (63%) participated. Their average age was 24.7
(variance = 23.8). Subjects reported playing video games an
average of 1.5 hours per week with variance of 10.01 hours. 4
were left-handed, but opted to use their right hand to operate
the mouse. Although all of the left-handed participants were
given the chance to customize their environment, none of them
changed their mouse settings to left-handed; prior studies have
shown that this does not disadvantage left-handed users [49].

Each participant performed the set of homogenous target
and the heterogeneous target experiments in 10 trials. For this
controlled experiment, we collected 490 trajectories for each
of 46 subjects, giving a total of 22, 540 timing measurements
(11, 040 for homogenous targets and 11, 500 for heterogenous
targets). While the order of experiments was not randomized,
participants were given breaks between experiments to reduce
fatigue. The experiments were performed under supervision
of lab assistants who encouraged participants to repeat a trial
if the participant became distracted. We cleaned the dataset
by keeping only timing measurements for cases where the
subject clicked on all presented targets within 3 std dev of the
global mean time. This removed approximately one third of
measurements where subjects did not complete the trajectory.
After cleaning, the dataset contained 16, 170 valid timing
measurements (8, 250 for homogenous targets and 7, 920 for
heterogenous targets).

2) Uncontrolled User Study Details: To conduct the un-
controlled study, we made the same applet available online
and advertised by emails and postings on user groups. Each
online participant confirmed participation with an online con-
sent form. We did not record IP addresses and could not
determine if a person visits multiple times so we cannot
determine number of unique participants. We request online
visitors to indicate which type of pointing device they are
using (trackpad, mouse, trackball, etc), but cannot verify the
responses.

As in the controlled study, the online applet presents visitors
with 24 homogenous targets and 25 heterogenous targets
and thus collects up to 49 timing measurements. Unlike the
controlled experiment, online visitors were not asked to repeat
each experiment 10 times.

We collected timing data from 2, 689 online visits to the
homogeneous target experiment and 2, 811 visits to the het-
erogenous target experiment. As in the controlled study, we
cleaned the dataset by keeping only timing measurements for
cases where the subject clicked on all presented targets within
3 std dev of the global mean time. This removed approximately
one third of measurements where subjects did not complete the
trajectory. After cleaning, the dataset included 78, 410 timing
measurements, 39, 360 for homogeneous targets and 39, 050
for heterogenous targets.

C. Results
Statistical analysis were conducted using α = 0.05 for

significance. Using root-mean-square error (RMSE), we com-
pare three two-parameter models that relate motion duration
to the ratio of target distance over target size: LOG (Fitts’
original logarithmic function), SQR (square-root), and LOG’
(McKenzie’s logarithmic plus 1.0) [30].
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We use regression to fit the unknown a, b parameters for
each subject and model and compute the resulting root-mean-
squared (RMS) error and variance. We perform two-sided
paired Student t-tests comparing the within-subject models
using the p = 0.05 level of significance3.

1) Homogeneous Targets: For homogeneous targets, the
results in the controlled and uncontrolled user studies are
consistent. In each study, the SQR model yields significantly
better fit than LOG or LOG’, except for the most difficult
targets.

Data from the controlled study are presented in Table II.
Data from the uncontrolled study are presented in Table III.
The best fit model is in the last column and is in bold face if
the difference is statistically significant.

2) Heterogeneous Targets: The data are presented first
using four sets of plots and then in four numerical tables
(Tables 6 through 9). The plots show RMS Error and standard
deviation for increasing values of difficulty for pairs of models.
The first two plots compare the LOG and SQR in the Con-
trolled and Uncontrolled Experiments respectively. The third
and fourth plots compare the LOG’ and SQR in the Controlled
and Uncontrolled Experiments respectively. The best fit model
is in the last column and is in bold face if the difference is
statistically significant.

For heterogeneous targets, in both controlled and uncon-
trolled studies, SQR yields a significantly better fit than LOG
for easier targets and LOG yields a significantly better fit
for harder targets. For heterogenous targets, the LOG’ model
yields a better fit than LOG or SQR, except for easier targets
where the results are inconclusive.

V. DISCUSSION

As summarized in the Related Work section, many models
for human reaching motion have been considered in the
decades since Fitts’ original study. This paper presents a
succinct derivation of the square-root variant based on optimal
control theory based on a piecewise linear model of human
velocity. Human trajectories are known to contain many higher
order terms (and in many cases reversals and overshoots)
but we show that a linear approximation is consistent with
the SQR variant proposed by Meyer et al. and performs as
well or better than Fitts’ LOG model for predicting measured
summary statistics. Two-parameter models focus on motion
duration and do not attempt to capture all of the nuances
of human velocity profiles which can be very complex and
usually include a number nonlinearities and asymmetrical
components.

This paper presents two user studies, one a controlled (in-
lab) study and the second an uncontrolled (online) study.
Both studies include two conditions, a “homogeneous targets”
condition where sequential targets are rectangular with fixed
distance and size, and a “heterogeneous targets” condition
where sequential targets are circular and vary in distance and
size.

3Since the tests are repeated multiple times in this paper, a conservative
Bonferroni correction can be applied to the p-value threshold to lower it to
0.0004. This correction does not change the overall conclusion of the paper.

(1) We find that the data from the controlled and uncon-
trolled studies are consistent. Table V exhibits inconsistency
for easier targets.

(2) We find that for homogeneous targets, the SQR model
yields a significantly better fit than LOG or LOG’, except with
the most difficult targets (with higher difficulty) where the
models are not significantly different. That SQR is superior
is surprising in these cases since Fitts’ original experiments
were with homogenous targets but this is consistent with more
recent experiments.

(3) We find that for heterogenous targets, SQR yields a sig-
nificantly better fit than LOG for easier targets and LOG yields
a significantly better fit for more difficult targets. The results
are inconclusive for targets in the middle range of difficulty,
while the the LOG’ model yields a significantly better fit than
both LOG and SQR on more difficult targets. This suggests an
underlying difference in human motor processes for targets of
different levels of difficulty which warrants further research.

To our knowledge, these datasets including 94, 580 human
reaching motion timing measurements are the largest collected
to date. The datasets may include correlations between subsets
of subjects with consistently fast response times and other
structure. The anonymized datasets are freely available at:
http://automation.berkeley.edu/fitts/ or by contacting the first
author.
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SQR Model LOG Model Hypothesis Testing LOG’ Model Hypothesis Testing
A/W µRMSE σRMSE µRMSE σRMSE p-value Best Fit µRMSE σRMSE p-value Best Fit

1.25 86.26 73.34 102.09 86.82 1.02E-02 SQR 93.39 83.74 2.33E-01 SQR
1.92 140.68 78.22 162.18 113.97 4.42E-03 SQR 118.17 83.18 4.36E-04 LOG’
2.39 164.37 93.82 214.24 140.2 1.38E-07 SQR 146.71 97.94 1.76E-02 LOG’
2.62 195.47 102.42 253.96 162.95 6.79E-08 SQR 178.96 112.99 4.69E-02 LOG’
2.94 199.92 108.42 266.23 176.04 1.28E-08 SQR 180.12 123 2.71E-02 LOG’
3.35 168.21 108.85 250.99 163.39 1.00E-13 SQR 162.56 118.13 5.20E-01 LOG’
3.82 234.14 126.64 317.67 203.14 4.47E-10 SQR 216.83 142.1 1.06E-01 LOG’
4.09 239.75 130.97 327.71 212.77 4.62E-10 SQR 220.04 150.55 6.95E-02 LOG’
4.84 295.41 152.44 383.26 243.54 4.26E-08 SQR 267.82 174.09 3.36E-02 LOG’
6.94 397.26 186.73 473.81 279.8 4.90E-05 SQR 347.05 203.18 9.34E-04 LOG’
7.65 409.27 201.03 474.89 299.14 1.09E-03 SQR 346.52 221.3 1.54E-04 LOG’
7.93 442.76 209.92 506.52 312.39 2.41E-03 SQR 375.59 233.22 1.11E-04 LOG’
8.59 442.47 209.2 495.86 307.24 8.85E-03 SQR 365.48 228.88 9.72E-06 LOG’
9.94 512.23 237.91 541.84 337.11 2.04E-01 SQR 408.58 255.77 9.08E-08 LOG’

10.36 501.45 235.7 529.48 329.97 2.07E-01 SQR 399.28 250.5 1.18E-07 LOG’
11.45 545.01 250.04 545.5 349.61 9.92E-01 SQR 410.84 268.34 5.82E-11 LOG’
11.84 560.45 257.54 567.83 350.57 7.35E-01 SQR 438.75 264.69 5.19E-09 LOG’
18.21 789.96 348.02 663.13 419.94 2.55E-05 LOG 528.38 334.25 2.00E-21 LOG’
18.81 790.24 330.94 649.96 405.78 1.86E-06 LOG 515 321.04 6.00E-25 LOG’

20 810.65 397.08 681.42 428.81 6.07E-05 LOG 551.39 341.18 2.53E-18 LOG’
21.14 836.16 395.38 679.44 431.03 1.41E-06 LOG 549.85 347.95 1.83E-21 LOG’
21.67 875.12 385.34 692.45 437.13 1.74E-08 LOG 559.49 352.79 8.17E-26 LOG’
21.92 865.82 413.59 699.3 444.25 1.08E-06 LOG 568.38 359.3 3.90E-21 LOG’

23.3 906.26 442.91 732.01 442.11 7.10E-07 LOG 606.58 356.09 3.89E-20 LOG’
25.27 987.07 435.41 734.77 468.18 1.83E-12 LOG 602.49 383.22 2.59E-30 LOG’

TABLE IV
HETEROGENEOUS TARGETS: CONTROLLED STUDY WITH 7,920 MEASUREMENTS: WHEN COMPARING LOG AND SQR MODELS, SQR YIELDS A
SIGNIFICANTLY BETTER FIT THAN LOG FOR EASIER TARGETS AND LOG YIELDS A SIGNIFICANTLY BETTER FIT FOR HARDER TARGETS. WHEN

COMPARING LOG’ AND SQR MODELS, THE LOG’ MODEL YIELDS A SIGNIFICANTLY BETTER FIT THAN SQR ON HARDER TARGETS (WITH HIGHER
DIFFICULTY).
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SQR Model LOG Model Hypothesis Testing LOG’ Model Hypothesis Testing
A/W µRMSE σRMSE µRMSE σRMSE p-value Best Fit µRMSE σRMSE p-value Best Fit

1.25 100.97 83.8 119.57 98.92 1.56E-08 SQR 104.93 90.87 2.06E-01 SQR
1.92 192.5 120.64 268.83 204.39 6.22E-36 SQR 185.8 141.69 1.55E-01 LOG’
2.39 245.9 133.16 367.02 248.2 3.02E-61 SQR 245.99 167.69 9.87E-01 SQR
2.62 246.15 141.72 380.05 264.3 1.32E-65 SQR 250.8 176.23 4.17E-01 SQR
2.94 266.7 140.79 417.87 261.97 4.45E-83 SQR 273.89 172.17 2.02E-01 SQR
3.35 190.52 141.98 338.92 259.77 4.51E-81 SQR 215.11 169.7 1.16E-05 SQR
3.82 373.06 206.7 558.07 369.86 4.52E-63 SQR 384.23 260.92 1.85E-01 SQR
4.09 357.48 189.44 543.8 350.37 1.87E-71 SQR 367.28 240.42 2.06E-01 SQR
4.84 364.24 207.13 562.2 384.6 2.01E-67 SQR 375.31 264.38 1.93E-01 SQR
6.94 573.27 283.94 763.44 486.99 3.13E-39 SQR 552.96 353.79 7.69E-02 LOG’
7.65 614.45 330.99 800.26 538.79 1.97E-30 SQR 586.59 401.56 3.45E-02 LOG’
7.93 602.04 303.43 784.19 505.72 2.40E-33 SQR 570.4 367.8 8.76E-03 LOG’
8.59 665.74 331.57 835.37 537.14 8.00E-26 SQR 618.94 397.74 3.60E-04 LOG’
9.94 716.32 433.1 872.83 638.81 1.62E-15 SQR 653.28 495.88 1.57E-04 LOG’

10.36 738.77 374.93 881.19 582.18 6.56E-16 SQR 659.37 436.75 5.39E-08 LOG’
11.45 764.25 381.57 887.13 582.48 3.85E-12 SQR 663.57 437.44 8.62E-12 LOG’
11.84 801.91 409.63 917.9 614.22 6.14E-10 SQR 695.07 465.35 1.16E-11 LOG’
18.21 1111.37 539.99 1085.7 715.08 2.58E-01 LOG 859.01 560.57 1.13E-36 LOG’
18.81 1091.28 563.31 1064.3 727.25 2.46E-01 LOG 839.83 571.25 1.95E-34 LOG’

20 1167.2 630.27 1116 797.88 4.66E-02 LOG 892.45 640.79 7.12E-33 LOG’
21.14 1203.31 607.69 1122.52 758.94 1.03E-03 LOG 896.95 603.33 4.82E-44 LOG’
21.67 1258.6 636.56 1157.07 790.1 7.83E-05 LOG 932.24 631.92 1.89E-45 LOG’
21.92 1258.05 651.53 1156.89 804.5 1.15E-04 LOG 931.79 646.3 1.58E-43 LOG’

23.3 1272.71 627.45 1151.02 746.97 8.67E-07 LOG 927.85 590.91 3.09E-54 LOG’
25.27 1364.91 657.32 1181.75 768.04 1.00E-12 LOG 956.81 612.56 1.24E-68 LOG’

TABLE V
HETEROGENEOUS TARGETS: UNCONTROLLED STUDY WITH 39,050 MEASUREMENTS: WHEN LOG AND SQR MODELS ARE COMPARED, AS IN THE

CONTROLLED STUDY, SQR YIELDS A SIGNIFICANTLY BETTER FIT THAN LOG FOR EASIER TARGETS AND LOG YIELDS A SIGNIFICANTLY BETTER FIT
FOR HARDER TARGETS. SIMILARLY, WHEN LOG’ AND SQR MODELS ARE COMPARED,THE LOG’ MODEL YIELDS A SIGNIFICANTLY BETTER FIT THAN

SQR ON HARDER TARGETS.


