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Abstract— For robots using motion planning algorithms such
as RRT and RRT*, the computational load can vary by
orders of magnitude as the complexity of the local environment
changes. To adaptively provide such computation, we pro-
pose Fog Robotics algorithms in which cloud-based serverless
lambda computing provides parallel computation on demand.
To use this parallelism, we propose novel motion planning
algorithms that scale effectively with an increasing number
of serverless computers. However, given that the allocation
of computing is typically bounded by both monetary and
time constraints, we show how prior learning can be used to
efficiently allocate resources at runtime. We demonstrate the
algorithms and application of learned parallel allocation in both
simulation and with the Fetch commercial mobile manipulator
using Amazon Lambda to complete a sequence of sporadically
computationally intensive motion planning tasks.

I. INTRODUCTION

When planning motions for robots in complex environ-
ments or facing high-dimensional problems, finding the
necessary computational resources can be costly. Motion
planning is computationally demanding [1] and can at times
require substantially costly parallel compute resources to
run at interactive rates. However, the computational cost
of planning can also be highly variable. Consider a mobile
manipulator robot tasked with decluttering an office space;
the low-dimensional motion planning problem of wheeling
around the office requires little computation relative to the
occasional demands of computing a collision-free motion for
a multi-link robot arm to move an object from a desk to
a shelf. Having an always-on high-end computer, whether
local or in the cloud, would result in an over-allocation
of resources and result in unnecessary costs. This paper
proposes methods for robot motion planning that make use
of on-demand parallelism via serverless computing.
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Fig. 1. Robots computing parallel versions of RRT and RRT* for complex
motion-planning problems using functions-as-a-service (FaaS) serverless
computing can scale to an arbitrary number of parallel processes. Under
the proposed system, the robot spawns “functions” (shown here as f(·)) to
compute a solution in parallel. Each function runs a sampling-based motion
planner to generate its a graph of motions, and coordinates with the robot
to produce a solution to the motion planning problem. More computing can
solve the problem faster but at higher cost.

In a serverless computing environment, cloud- and fog-
based service providers charge for units of compute time
in quanta on the order of 100 ms [2]. To achieve tight
latencies and rapid scaling, existing serverless platforms
separate compute and storage and expose a Functions-as-
a-Service (FaaS) compute model. In the FaaS model, user
logic is encapsulated in stateless functions or lambdas that
manipulate cloud storage services and respond to web re-
quests. While each lambda running on a FaaS has limitations,
FaaS provides a significant computing benefit: the number of
lambdas that can compute in parallel is unbounded.

In this paper, we propose using FaaS as a scalable parallel-
processing platform on which robots can compute motion
plans. We present two novel motion planners targeted to-
wards the parallel processing offered by FaaS. These motion
planning algorithms parallelize both within a lambda execu-
tion, and across multiple concurrently running lambda exe-
cutions. This “multi-lambda” approach to parallel processing
inherits properties from both shared-memory and distributed-
memory approaches. Within the lambda execution, the plan-
ners we propose benefit from shared-memory parallelism
which allows each lambda to compute faster with additional
hardware threads. The planners we propose also use a
distributed-memory parallelism approach that communicates
updates to concurrently running lambda executions (Fig. 1)
so that each lambda can either terminate sooner or converge



to a better result faster.
This paper makes the following contributions:
1) probabilistically-complete and asymptotically-optimal

sampling-based motion planners for mixed-parallel
(shared/distributed-memory) model,

2) an implemented system for mixed-parallel motion
planning using lambdas on a FaaS platform,

3) an approach to predicting solution probability and con-
vergence rates of similar motion planning problems,

4) budget-based allocation of parallel resources for mo-
tion planning computation, and

5) experiments with simulated robots and the Fetch mo-
bile manipulator using Amazon’s AWS Lambdas for
motion planning that suggest the proposed algorithms
and system can significantly speed up motion planning
computation in a deployed robot system.

II. RELATED WORK

Sampling-based motion planners, such as probabilis-
tic roadmaps (PRM) [3], rapidly-exploring random trees
(RRT) [4], and asymptotically-optimal variants thereof, e.g.,
RRT* [5], BIT* [6], and SST* [7], tackle complex motion
planning problems by generating random robot configuration
samples and connecting them into a graph of valid mo-
tions. These planners are probabilistically complete, and with
proper attention to how samples are connected (or “rewired”)
in the graph, these planners can be asymptotically optimal.
Both probabilistically-complete and asymptotically-optimal
planners are presented in this paper.

Parallelized sampling-based motion planners find solutions
and converge towards optimality faster through the use of
parallel computing techniques [8], [9]. We consider two par-
allel computing techniques: shared-memory and distributed-
memory parallelism. In shared-memory parallel motion
planners, multiple processors and cores independently sam-
ple and contribute to the construction of a single shared
graph, through locks (e.g., KPIECE [10]) or lock-free atomic
operations (e.g., PRRT, and PRRT* [11]). In distributed-
memory parallel motion planners, such as SRT [12], Bulk-
Synchronous RRT [13], Blind RRT [14], RRT-OR [15],
[16], [17], and C-FOREST [18], independent single-threaded
motion planners collaborate to compute motion plans by
communicating progress towards a solution. While other
forms of computational parallelism, such as those based
upon GPU computing (e.g., [19], [20]), can speed up the
computation of motion plans, these computing platforms
are as yet not readily available on FaaS platforms. The
proposed motion planners combine the shared-memory paral-
lelism (within a lambda) and distributed-memory parallelism
(between lambdas) of PRRT and RRT-OR, and PRRT* and
C-FOREST, to speed up motion planning when running on
multiple multi-core lambdas.

Prior work on gaining additional cloud-based computation
often focuses on servers. Kehoe et al. [21] presented an
overview of cloud-robotics in application and approaches.
Bekris et al. [22] showed the benefit of cloud-based compu-
tation in a warehouse environment. Tian et al. [23] offload

grasp-analysis to the cloud. Tanwani et al. [24] propose a fog-
robotics approach to deep learning for surface decluttering.
Cloud-based motion planning can also adapt to dynamic
environments [25] has the potential to speed up motion
planning while being economically viable [26]. While this
prior work focuses on server-based computation, in this
work, we instead explore using serverless computing.

Cloud and fog-based service providers are still evolving
their serverless computing offerings. Hellerstein et al. [27]
identify limitations in using serverless in both computing
and data-intensive algorithms. Jonas et al. [28] provide a
history of cloud computing and the evolution of serverless
computing, as well as potential directions for future evolu-
tions of serverless computing. In this paper, we make use
of serverless computing in its present offering, and envision
that the benefits of using the approach we present will grow
as serverless computing evolves (e.g., [29], [30], [31], [32]).

A common thread of modern cloud-based computing is
determining which virtual machine (VM) best fits the de-
mands of the application. Yadwadkar et al. [33] identify
this as a problem and propose a solution for selecting an
optimal VM. Chung et al. [34] explicitly optimize a cluster
setup for budget. Kröhnert et al. [35] propose a method that
adapts computing resource allocation to a motion planning
algorithm as a single instance of the algorithm runs. In this
paper we codify the selection of serverless VM type and
amount of serverless allocation as a minimization problem
on a per-problem basis and explicitly solve it in the context
of the motion planning algorithms we present.

III. PROBLEM DEFINITION

Serverless motion planning requires addressing two prob-
lems detailed here: parallelized motion planning, and how
much parallelism to allocate to its computation.

A. Motion planning problem
Let q be a robot’s configuration—the complete specifi-

cation of a robot’s degrees of freedom. Let C be the set
of all possible configurations, thus q ∈ C. Let Cfree ⊆ C
be the set of valid configurations, e.g., ones that are not
in collision with any obstacle and do not violate any task-
specific constraints. Let L : C × C → {0, 1} be a robot-
specific predicate function that is 1 if the path between two
configurations is valid according to a local planner, and 0
otherwise. Let d : C × C → R≥0 be a function that reflects
the relative difficulty of traversing from one configuration
to another, e.g., in terms of distance travelled, time taken,
or energy expended. Given a starting configuration qstart

and a set of goal configurations Cgoal, the objective of
motion planning is to compute a sequence of configurations
τ = (q0,q1, . . . ,qn) such that q0 = qstart, qn ∈ Cgoal,
qi ∈ Cfree for all i ∈ [0, n], and L(qi,qi+1) = 1 for all
i ∈ [0, n). Let c(τ) =

∑n
i=1 d(qi−1,qi). The objective of

optimal motion planning is to find a τ that minimizes c(τ).

B. Parallel-computation budget problem
Let p ∈ Z+ be the number of computing processes

concurrently solving a motion planning problem. Let v > 0



be the cost of a serverless computing resource (e.g., in dollars
per second). The objective of a parallel-computation budget
problem is to find a p that minimizes a real-world objective,
such as cost to find a solution with high probability in a
given amount of time:

argmin
p∈Z+

p · t · v

s.t. t < tmax Êsolved(p, t) > x,

where Êsolved(p, t) is an approximation of the probability
that the motion planner find a solution at time t, and x is the
desired probability. To solve this and similar minimization
problems using standard optimization techniques, one must
be able to estimate Êsolved(p, t)—computing this function is
thus part of the parallel-computation budget problem.

IV. METHOD

This section proposes two approaches for multi-lambda
motion planning. The first is probabilistically complete, and
the second is asymptotically optimal.

A. Probabilistically-Complete Multi-Lambda Planning

Robots using probabilistically-complete motion planning
algorithms can compute motion plans more rapidly with
the simultaneous invocation of multiple lambdas. This is a
result of the probabilistically-complete property that means
that for a given motion planning problem S running on 1
CPU and using 1 core, the probability of finding a solution
Psolve(t;S, 1, 1) increases with increasing time t, converging
to 1 as t → ∞. By simultaneously computing with p
functions on the same problem, the probability of finding
a solution Psolve(t;S, p, 1) is:

Psolve(t;S, p, 1) = 1− (1− Psolve(t, S, 1, 1))
p
.

The RRT-OR [15] algorithm exploits this property by com-
puting p independent RRTs and stopping as soon as any
process finds a motion plan. The multi-lambda PRRT-OR
similarly uses the property to scale to run concurrently on
multiple lambdas (see Fig. 2), with the difference that it
also exploits shared-memory multi-core parallelism in each
lambda using PRRT [11] to increase the sampling rate within
each lambda. Thus,

Psolve(t;S, p, c) = Psolve(t/c;S, p, 1),

where c is the number of cores on which each function is
run, assuming linear speedup1. This is the property that that
allows PRRT to compute solutions more rapidly.

Alg. 1 combines the favorable aspects of RRT-OR and
PRRT into a single motion-planning whole. In this process,
the robot acts as an initiator of, and coordinator for, all of
the computing functions2. This algorithm initiates the process

1In practice, FaaS providers expose hardware threads as a portion of a
shared computing core, and thus more modest speedups are likely.

2FaaS providers often restrict functions to not allow incoming connec-
tions. While other broadcast formulations are possible through additional
services, we present a solution here that presumes the robot can allow
incoming connections and thus act as the broadcast coordinator.

Algorithm 1 MLPRRT (Multi-Lambda Parallel RRT)
1: ip← get robot’s network address
2: s← socket to listen for network connections on ip

3: for i← 1 to p do
4: Λ← Λ ∪ {call lambda(

k, PRRT-OR Lambda, qstart, Cgoal,Cfree, L, ip)}
5: S ← ∅
6: while τ = ∅ do
7: wait for connection on s or new result in Λ
8: if incoming connection on s then
9: S ← S ∪ {accept incoming connection from s}

10: for all λi ∈ Λ do
11: τi ← poll lambda result(λi)
12: if τi 6= ∅ then
13: τ ← τi
14: broadcast “solved” to all S (and handle any stragglers)

Algorithm 2 PRRT-OR Lambda(qstart, Cgoal, Cfree, L, ip)

1: G = (V,E)← (qstart,∅) // initialize tree
2: s← open connection to ip

3: τ ← ∅
4: for each available hardware thread, in parallel do
5: RNG← uniquely-seeded random number generator
6: while τ = ∅ and not poll solved(s) do
7: qrand ← RNG()
8: qnear ← neighbor(V,qrand) // concurrent
9: if qnear ∈ Cfree then

10: qnew ← steer(qnear,qrand)
11: if L(qnear,qnew) then
12: (V,E)← (V ∪ {qnew}, E ∪ {(qnear,qnew)})
13: if qnew ∈ Cgoal then
14: τ ← path from qstart to qnew // concurrent
15: return τ

by establishing a broadcast mechanism (lines 1–2) and then
spawing the desired number of lambdas (lines 3–4). The
algorithm then waits for the first completed motion plan
computation, and as with RRT-OR, stops all other running
lambdas, in this case, with a broadcast message (line 14).
This last step saves on computation budget.

The algorithm that computes the motion plan and runs
in the FaaS is the multi-lambda PRRT-OR lambda shown
in Alg. 2. This algorithm is PRRT modified to run as a
lambda. PRRT is a highly-scalable multi-core version of
the RRT algorithm [11], we summarize here: PRRT uses
a concurrent nearest-neighbor searching data structure and
lock-free updates to a graph to allow multiple threads to
simultaneously add samples to the same tree without slowing
down due to contention over locks. The lines that require
special attention, and for which we refer the reader to PRRT,
are listed with the “// concurrent” comment.

B. Asymptotically-Optimal Multi-Function Planning

While the focus of the probabilistically-complete motion
planning was on the tradeoff between computing costs asso-



(a) Planner 1 (b) Planner 2 (c) Planner 4 (d) Planner 12

Fig. 2. PRRT-OR operation. With PRRT-OR, uniquely seeded PRRT planners run in parallel, stopping as soon as any planner finds a solution. The
multi-core parallelism in PRRT allows each planner to shorten the expected solution time proportional to the number of cores it uses. The parallel execution
exploits the probabilistic nature of the algorithm to find a solution faster. This figure shows the state of 4 of the 16 planners in a single PRRT-OR plan
computation. Each is in varying proximity to finding the goal, and only the right-most one has found the goal.

(a) Before update (b) After update (c) Another update (d) Final plan

Fig. 3. PC-FOREST operation. With PC-FOREST, uniquely seeded PRRT* planners run in parallel, updating (via the robot) the other planners with
the best paths as they find them. This figure shows the state of a single PRRT* planner of 16 planners before receiving an update (a), after an update (b),
and after interleaved sampling and a successive update (c). The final state after 1000 samples computed by all 16 planners is in (d). When the planner
continues sampling, it only needs to sample within the green ellipse, focusing exploration and speeding up the convergence rate.

ciated with motion planning and the probability of finding
a motion plan, the focus of asymptotically-optimal motion
planning is to find a plan that minimizes the sum of a
distance function. One could thus place a multi-lambda
motion planner in the context of a larger problem, such as
minimizing the overall costs or energy required to operate
a robot, or maximizing the profitability of robot operation.
With an asymptotically-optimal motion planner, the sum of
distances decreases with additional compute time, either by
running longer or through the use of parallel computation.

The multi-lambda asymptotically-optimal motion planning
algorithm we propose is a combination of the PRRT*
shared-memory motion planner, and C-FOREST distributed-
memory motion planner. For brevity, we do not include the
robot’s coordinating algorithm as it is similar to Alg. 1,
with the differences being that: (1) motion planning does
not stop on the first solution, but instead continues until a
user-specified termination condition (e.g. time limit); and (2)
as the robot receives motion plans, it broadcasts them out to
all running functions to improve their efficiency.

Combined C-FOREST and PRRT* (Alg. 3): The combined
algorithm, outlined in Alg. 3, offers advantages from both
PRRT* and C-FOREST. PRRT* can scale to available multi-

Algorithm 3 PC-FOREST Lambda()

1: s← open connection to ip

2: G = (V,E)← ({qstart},∅)
3: c(qstart), c(C \ {qstart})← 0,∞
4: τbest, cbest ← ∅,∞
5: for each available hardware thread, in parallel do
6: while stopping criteria not met do
7: recv broadcast() // ← only 1 thread
8: qrand ← rejection sample(RNG)
9: qnear ← neighbor(V,qrand) // concurrent

10: qnew ← steer(qnear,qrand)
11: if L(qnear,qnew) then
12: add vertex(qnear,qnew)

core shared-memory parallelism, generating samples faster,
and thus converging to optimal faster. C-FOREST can scale
out to distributed-memory parallelism, effectively sharing
information about progress to convergence between indepen-
dently running motion planners. Since this algorithm is run in
the context of a FaaS function, it starts by both initializing
the motion planning structures (lines 2–4) and opening a
connection for sending and receiving updates. PRRT* stores



Algorithm 4 add vertex

1: r ← RRT* radius of search based on ‖V ‖
2: N ← neighbors(V,qnew, r) ∪ {qnear} // concurrent
3: qparent ← argminqi∈N :L(qi,qnew) c(qi) + d(qi,qnew)
4: update parent(qparent,qnew)
5: for all qi ∈ N do
6: update parent(qnew,qi)
7: V ← V ∪ {qnew} // qnew may already be in V

Algorithm 5 update parent(qparent,qchild)

1: repeat
2: c′ ← c(qparent) + d(qparent,qchild)
3: if c(qchild) < c′ then
4: return // existing route to child is shorter
5: until successful atomic update of E and c(qchild)
6: if qchild ∈ Cgoal and c′ < cbest then
7: cbest, τbest ← c′, (path following edges to root)
8: broadcast cbest, τbest
9: for all (qchild,qi) ∈ E do

10: update parent(qchild,qi)

the shortest sum of distances to a configuration using c(·).
PRRT* builds a shared graph using all available hardware
parallelism (line 5), using underlying data structures that
allow for lock-free and concurrent updates with minimal
overhead. Each thread then continually generates random
samples (line 8) and adds them to a shared graph if the path
is feasible (lines 11). The algorithm delegates one thread to
have the additional responsibility of integrating updates from
other running functions (line 7).

Adding Vertices to the Graph (Alg. 4): The add vertex

operation (Alg. 4) adds a vertex to the graph while locally
rewiring the graph towards optimality. The local rewiring fol-
lows from RRT* [5] and makes the planner asymptotically-
optimal. Rewiring is a two-step process. The first step selects
the shortest path to the added vertex (lines 3). The second
step checks all vertices in the neighborhood, and rewires
them through the added vertex if the path is shorter (line 6).

Updating Edges in the Graph (Alg. 5): As the motion
planner adds vertices to the graph, the effect of local rewiring
operations needs to be pushed out to the rest of the tree [36].
Alg. 5 both updates a vertex’s parent node (and thus path),
and pushes updates to child nodes effected by a lowered c(·)
to the node. The update, from PRRT*, updates the parent,
path, and associated c(·) of a vertex in a single atomic
operation. This atomic operation checks that the update will
lower c(·) as it expects to do, replaces if it does, or fails if
it would not. Since threads may be competing to update the
same part of the graph, one thread’s successful update may
cause another thread’s update to fail. When this happens, the
thread whose update failed, compares to the new c(·) of the
node, and if the update would still produce a better path, it
tries the atomic operation again (line 5).

Incorporating Updates from Other Running Functions:
Alg. 3 runs simultaneously in multiple lambdas. Each in-

Algorithm 6 recv broadcast

1: if broadcast available then
2: c′best, τ

′
best ← receive broadcast

3: if c′best < cbest then
4: cbest, τbest ← cbest, τ

′
best

5: for all (qi,qj) ∈ τbest do
6: add vertex(qi,qj)

Algorithm 7 rejection sample

1: repeat
2: qrand ← RNG()
3: q′goal, c

′
best ← atomically load from τbest, cbest

4: until h(qstart,qrand) + h(qrand,q
′
goal) < c′best

5: return qrand

dependent lambda shares its progress towards an optimal
motion plan, and thus benefits from the progress of other
lambdas. This sharing of progress towards optimality, as
originally introduced by C-FOREST, includes two opera-
tions that speed up motion planning: (1) broadcasting and
incorporating the best path into each planner’s tree, and (2)
sampling within a bounded ellipse to insure that the planner
only considers configurations that can improve the best path.

The first operation, broadcasting and incorporating best
paths, starts with the the broadcast of any improvement to
the best solution (Alg. 5, line 8), and ends with incorporating
the best path into the tree in recv broadcast (Alg. 6).
The recv broadcast algorithm checks for broadcasts, and
when it finds one, it incorporates the path into the lambda’s
local graph. Since each lambda may be running on multiple
threads, the function only runs recv broadcast from a
single thread in order to avoid duplication of effort. Similarly,
it makes use of the add vertex function to insure that the
path is properly incorporated into the graph in the presence
of concurrent updates.

The second operation, sampling within a bounded ellipse,
improves the convergence rate by only considering samples
that can improve the best path to goal. This operation, shown
in Alg. 7, uses information about the current best path to
reject any samples whose straight-line distance from start
and goal would be longer than the current best route.

In implementation, the updates to the best path and its
associated cost make use of PRRT*’s data structures to allow
for atomic updates. The data structure represents a path and
its cost in a single object with an immutable linked-list path
to the starting configuration. By representing the path and
cost in a single immutable data structure, updating the best
path (in recv broadcast) is a matter of a single atomic
update to a pointer. Similarly, accessing the best path (in
rejection sample) is a single atomic read (i.e., the goal
configuration qgoal and the cost of the path to it cbest are
considered together).
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Fig. 4. Multi-lambda planners computing solutions to various motion planning problems. Each column shows a different motion planning problem.
In all graphs, the x-axis is wall-clock time in seconds, the solid lines show the performance of lambdas making use of the 2 hardware threads (2T), and
the dotted lines show the performance using one thread (1T). The color codes (see key) correspond to the number of lambdas run in parallel. We run up to
16 lambdas (16 λ) for the PRRT-OR, and 100 lambdas (100 λ) for the PC-FOREST. The top row shows the motion planning scenario. The middle row
shows the multi-lambda PRRT-OR empirical cumulative distribution function. The lighter wide line shows the Gumbel distribution fit on the two-threaded
(2T) lambda runs. The bottom row shows the multi-lambda PC-FOREST convergence rate.

C. Budget-Constrained Motion Planning

Given that lambda computing provides an unbounded
source of parallelism that is pay-per-use, it becomes nec-
essary to compute an estimate of how many lambdas to
allocate to solving a motion planning problem. Since motion
planning is PSPACE-complete [1], and due to the probabilis-
tic nature of sampling-based motion planning, determining
the precise computational resources required is essentially
impossible. Instead, we focus on learning an estimate based
on observations of previous motion plan computations. We
fit a standard probability distribution to the time it takes
to compute a solution. In the results section, we found the
Gumbel distribution [37], as it considers the maximum of
multiple samples, fit the probability distribution exhibited in
our experiments. Its cumulative distribution function is

e−e
−(x−µ)/β

,

and has the benefit that it can be linearized and quickly least-
squares fit and updated.

With this probability estimated, we propose that the
amount and type of lambda computing to allocate to a motion
planning problem can be readily computed based on the
desired minimization objective.

V. RESULTS

We experiment using Amazon’s AWS Lambdas to com-
pute motion plans for 6 degree-of-freedom (DOF) rigid-body
motion planning problems from OMPL [38] and for a se-
quence of motion planning problems for the Fetch [39] robot.
The Fetch robot is tasked with decluttering an office space.
Moving between decluttering tasks is a 3-DOF problem that
does not require lambda computing as it can be quickly
solved by the Fetch robot’s onboard CPU. Each decluttering

task is an 8-DOF task (7 revolute joints and 1 prismatic lift
joint) that sporadically uses lambda computing.

Fig. 4 shows the scenarios (first row), cumulative dis-
tribution function for the probabilistically-complete plan-
ner (second row), and convergence rate over time of the
asymptotically-optimal planner (third row). The second row
also shows a parameterization of the Gumbel distribution
fit to the data, allowing the motion planner to estimate the
amount of computing to allocate for a particular problem and
given a time or budget constraint.

The graphs suggest that the planners are both able to
scale to make use of multiple lambdas—allocating more
lambdas allows the system to solve the problem sooner,
and converge to a better solution faster. The graphs also
suggest that the lambdas are also able to speed up motion
plan computation using the multi-core computing available
within each lambda.

VI. CONCLUSION

In this paper, we presented motion planning algorithms
that make use of multi-core serverless lambda computing and
present a method for estimating the amount of computing
to allocate to a motion planning problem. The multi-core
lambda algorithms make use of both multi-core parallelism
within the lambda and scale with the computing power of
additional lambdas running in parallel. Experimental results
running these planners suggest that a system making use of
this lambda can effectively scale to solve complex motion
planning problems quickly.

In future work, we will explore addressing the variable
latency associated with lambda invocation, scaling to more
lambdas, and dynamically changing the parallelism allocated
to a running problem (e.g., [35]).
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[35] M. Kröhnert, R. Grimm, N. Vahrenkamp, and T. Asfour, “Resource-
aware motion planning,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2016, pp. 32–39.

[36] O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-
based algorithms for optimal motion planning,” in 2013 IEEE Inter-
national Conference on Robotics and Automation. IEEE, 2013, pp.
2421–2428.

[37] E. J. Gumbel, “The return period of flood flows,” The annals of
mathematical statistics, vol. 12, no. 2, pp. 163–190, 1941.
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