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Abstract— We introduce a method to optimize on a patient-
specific basis the kinematic design of the Continuum Reconfig-
urable Incisionless Surgical Parallel (CRISP) robot, a needle-
diameter medical robot based on a parallel structure that
is capable of performing minimally invasive procedures. Our
objective is to maximize the ability of the robot’s tip camera
to view tissue surfaces in constrained spaces. The kinematic
design of the CRISP robot, which greatly influences its ability
to perform a task, includes parameters that are fixed before
the procedure begins, such as entry points into the body
and parallel structure connection points. We combine a global
stochastic optimization algorithm, Adaptive Simulated Anneal-
ing (ASA), with a motion planner designed specifically for the
CRISP robot. ASA facilitates exploration of the robot’s design
space while the motion planner enables evaluation of candidate
designs based on their ability to successfully view target regions
on a tissue surface. By leveraging motion planning, we ensure
that the evaluation of a design only considers motions which
do not collide with the patient’s anatomy. We analytically show
that the method asymptotically converges to a globally optimal
solution and demonstrate our algorithm’s ability to optimize
kinematic designs of the CRISP robot on a patient-specific basis.

I. INTRODUCTION

A robot’s kinematic design, i.e., physical parameters fixed
prior to the robot’s use that affect a robot’s kinematics,
can greatly impact the robot’s ability to perform a task.
The quality of a specific kinematic design can vary as the
robot’s task and environment changes. In medical robotics,
the quality of a robot’s kinematic design is influenced by the
specific surgical or interventional procedure it will perform
as well as the specific patient anatomy in which it will op-
erate. A suboptimal kinematic design may negatively impact
patient outcomes. In this work, we introduce a method to
optimize on a patient-specific basis the kinematic design of
the Continuum Reconfigurable Incisionless Surgical Parallel
(CRISP) robot [1], [2] to maximize the ability of the robot’s
tip camera to view tissues in constrained spaces.

The CRISP robot is a minimally invasive surgical robot
composed of needle-diameter tubes which are inserted into
the patient and assembled into a parallel structure (see
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Fig. 1. Two images of the CRISP robot, where 2 manipulators adjust
the base poses of needle-diameter tubes that are inserted into the body and
assembled into a parallel structure.
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Fig. 2. Different designs can greatly impact the robot’s ability to view the
interior surface of a volume via its tip camera. Here we show 2D examples of
a robot (blue) and its field of view (yellow) after being occluded by obstacles
(red). In Design 1 (top), the robot cannot view much of the interior surface
of the volume (the black circle) due to obstacles as it is manipulated through
3 collision-free configurations. However a different design (bottom), which
has different entry points into the volume and a different snare grasping
location, can view a much larger percentage of the interior surface.

Fig. 1). This assembly is performed using snares, which the
tubes use to grip one another. In addition to snares, other
tools can be passed through or placed at the end of the tubes,
such as chip-tip cameras, biopsy needles, ablation probes,
etc. As the tubes are then manipulated outside the body by
robotic manipulators, the shape is changed inside the body to
perform the surgical task. Due to the needle-like diameter of
the tubes, the CRISP robot has the potential to further reduce
invasiveness of minimally invasive surgical procedures such
as abdominal, fetal, and neonatal surgery [1], [3]. When a
chip-tip camera is mounted at the tip of one of the tubes, the
robot can operate as an endoscope, enabling the physician
to view the interior surface of an anatomical cavity, such



as the abdomen or pleural space (between a lung and the
chest wall) [4]. Whereas typical pleural endoscopes have
diameters of 7mm and may require an incision as large as
10mm, the CRISP robot requires only needle-size (1-3mm
diameter) entry points in the skin.

In this paper we investigate kinematic design optimization
for the CRISP robot with a chip-tip camera to maximize
the surface area of tissues visible to the physician in a
constrained space. We consider as part of the optimization
the anatomical entry points of each tube into the patient’s
body, which may be constrained by anatomical factors,
as well as the snare grasping locations which define the
parallel structure of the robot. Appropriately choosing these
kinematic design parameters significantly impacts the robot’s
ability to view the anatomical sites of interest to the physician
(see Fig. 2).

Our design optimization approach combines a global
numerical optimization method with a motion planner to
evaluate the ability of candidate kinematic designs to view
the anatomical sites of interest. Specifically, we use the
global optimization algorithm Adaptive Simulated Annealing
(ASA) [5], [6] to generate candidate designs, which we
evaluate using a sampling-based motion planner specifically
designed for viewing anatomical sites using the CRISP robot
[3]. By evaluating candidate designs with a motion planner,
we ensure that a target is considered viewable by the robot
only if viewing the target can be achieved by a robot motion
that avoids collision with obstacles in the patient anatomy.
This guarantees that the evaluation of the design takes into
account the motions required by the robot to view the target
regions, not just the robot’s theoretical ability to do so in the
absence of constrained anatomy.

Whereas other previous ASA based approaches [6] opti-
mize a design’s ability to reach goal regions, we focus on
optimizing a design’s ability to view target regions with its
camera, an application which introduces unique challenges
in providing theoretical guarantees. We prove that for this
application the optimization is asymptotically optimal, i.e.,
almost surely converges to a globally optimal kinematic
design. We then demonstrate the ability of the design op-
timization algorithm to produce high quality designs in two
simulated scenarios, including a pleuroscopic scenario based
on patient anatomy. We show that the algorithm generates
designs which over time significantly improve the robot’s
ability to view target regions.

II. RELATED WORK

Numerical optimization methods have been developed to
optimize the design of various medical robots. Another con-
tinuum surgical robotic system for which design optimization
methods have been developed is the concentric tube robot.
Concentric tube robots are similar to the CRISP robot in
that they are continuum systems with complex and compu-
tationally costly kinematics due to the elastic and torsional
interactions between their tubes. The complex kinematics
of these devices have motivated unique approaches to their
design optimization.

Bergeles et al. provide a method that computationally
optimizes concentric tube robot designs to reach a set of
goal points while avoiding collisions with anatomy [7].
This method, however, does not provide a guarantee of
global optimality. Burgner et al. leverage a grid-based search
of the robot’s configuration space with a nonlinear opti-
mization method to optimize designs, maximizing reachable
workspace while satisfying anatomical constraints [8]. Ha et
al. optimize designs to maximize the concentric tube robot’s
elastic stability, a problem which is of particular concern for
concentric tube robots [9]. Morimoto et al. take a unique
approach to concentric tube robot design by providing a
human with an interface to interactively design the tubes
of the robot [10]. These works focus on computing goal
configurations of the robot for a given design, and as such do
not provide a guarantee that there exists a collision free path,
or sequence of configurations, which allows the computed
design to achieve a goal configuration.

To accomplish optimization with start to goal path guaran-
tees, Torres et al. integrate a motion planner into the design
optimization process, ensuring that valid paths exist to each
reachable target for a given design [11], but this method
suffers from slow performance. Baykal et al. build upon
this method to compute a minimal set of designs that reach
multiple targets [12]. Most recently, Baykal et al. provide
asymptotic optimality in the design of piecewise cylindrical
robots, which includes concentric tube robots, for reaching
workspace targets [6]. In this paper, we build upon this prior
work to optimize the kinematic design of the CRISP robot
for anatomical visibility, rather than reachability, and show
asymptotic optimality under this new optimization metric.

The optimization of surgical port placement, which has
parallels to our optimization of needle entry points, has
received previous study as well. Liu et al. optimize port
placement and needle grasping locations for autonomous
suturing [13], but they require as input a discrete set of
candidate grasping and port placement locations. Hayashi et
al. investigate abdominal port placement by examining the
angular relationship between the port location and anatomical
sites in the abdomen [14]. They do not, however consider
the requirement of more complex motions during the proce-
dure. Feng et al. optimize laparoscopic port placement for
robotic assisted surgery by evaluating the robot’s reachable
workspace in the patient [15], but do not consider complex
motions or obstacle avoidance during the procedure.

Design optimization has been studied outside of the surgi-
cal robotics domain as well. For instance, discrete parameter
design optimization has been studied for a variety of ap-
plications, including multi-modal robots [16], [17], jumping
robots [18], modular robots [19], [20], and protein chains
[21]. These methods focus on optimizing over a finite,
discrete set of features, whereas in this paper we optimize
over continuous design parameters.

Methods for optimizing the design of serial manipulators
has received a large amount of study and include grid-based
approaches [22], geometric approaches [23], interval analysis
[24], and genetic algorithms [25], [26], [27], [28]. Frequently
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Fig. 3. The CRISP robot’s kinematic design parameters (orange), which
must be set before a procedure, include the entry points into the body (rcam
or rk) and the snare grasping locations (sk). The robot’s configuration
variables (blue), which can be continuously modified during a procedure,
include the tubes’ insertion lengths into the body (`cam or `k) and the
tubes’ orientations at the entry point (Rcam or Rk).

these methods require simplified kinematic models or restric-
tive assumptions to achieve computational feasibility, and
typically provide no theoretical performance guarantees.

Taylor et al. present a non-linear constrained optimization
approach to the simultaneous design of shape and motion for
dynamic planar manipulation tasks [29]. Ha et al. explore the
relationship between design and motion by leveraging the
implicit function theorem to jointly optimize robot joint and
motion parameters for manipulators and quadruped robots
[30]. These methods, however, do not provide global guar-
antees and may be subject to local minima.

III. PROBLEM DEFINITION

We consider a CRISP robot composed of n needle-
diameter tubes. One of the tubes, the camera tube ρcam, has
a chip-tip camera attached to its tip. The rest of the n − 1
tubes have snares with which they grip ρcam and are denoted
ρk where k is a unique integer label.

A. Design Space

Let rcam, r1, . . . , rn−1,∈ R3 represent the points at which
the tubes of the CRISP robot enter the patient’s body
expressed in a global coordinate system. Let the set of all
valid such entry points be R ⊆ R3. The entry points into
the patient’s body act as remote center of motion (RCM)
points, preventing the tubes from applying lateral load to the
patient’s skin during the procedure, and are fixed during the
operation of the robot.

The CRISP robot is assembled into a parallel structure
where each snare tube ρk grips the camera tube at sk ∈ R,
the scalar valued arc length along ρcam. The snare grasping
locations are fixed during operation.

We define a kinematic design d of the CRISP robot as
a vector describing each tube’s entry point into the body
and each snare tube’s grasping location. The open set of all
kinematic designs is D ⊆ Rn−1 × R3n (see Fig. 3).

B. Configuration Space

Once the kinematic design d is fixed and the CRISP robot
is assembled inside the patient, the operation of the robot
may then be performed by rotating the tubes about their

RCM entry points and inserting and withdrawing the tubes
from the patient. We define a configuration of the robot as

q = (Rcam, R1, . . . Rn−1, `cam, `1, . . . , `n−1),

where R ∈ SO(3) represents a tube’s rotation at its entry
point, and ` ∈ R represents a tube’s insertion length into
the patient’s body. The open set of all configurations then
becomes Q ⊆ SO(3)n × Rn. We define a path as a
continuous function σ : [0, 1] → Q, where σ(0) = q0, with
q0 defined as the starting configuration of the robot, which
may vary for different designs (see Fig. 3).

C. Workspace

We define the robot’s workspace as W ⊆ R3. We define
Shape : D×Q×K →W as the continuous shape function of
the robot, where K is the compact set of points representing
the robot’s geometry.

Given a compact obstacle set O ⊆ W , the set of points
which must be avoided by the robot’s geometry, we say a
design-configuration pair (d,q) ∈ D × Q is in collision if
there exists k ∈ K such that Shape(d,q,k) ∈ O.

A design-configuration pair (d,q) is said to be reachable
if there exists a path σ : [0, 1] → Q with σ(0) = q0 and
σ(1) = q such that for all 0 ≤ s ≤ 1, (d, σ(s)) is not in
collision.

Let View : D × Q × V × [0, 1] → W be a continuous
function defining the view of the robot, where V represents
the set of rays along which the robot can see as determined
by the camera’s field of view, and [0, 1] is the domain of a
distance along the ray. A target region T ⊆ W is said to be
visible from a design-configuration pair if there exists a ray in
V that reaches any point in the target region, unoccluded by
any obstacle. More formally, a target region T ⊆ W is visible
from a design-configuration pair (d,q) if ∃v ∈ V, r ∈ [0, 1] :
View(d,q,v, r) ∈ T ∧ ∀s ∈ [0, r] : View(d,q,v, s) /∈ O.

D. Maximizing Viewable Anatomy

Let T = {T1, . . . , Tm} denote the set of m physician-
specified target regions that we seek to view, where each
target region denotes an open set of points in the workspace,
Ti ⊆ W, ∀i ∈ [m]. We define a target region as viewable
under design d if the target region can be viewed from any
configuration that can be reached by following a collision-
free path. We then define the number of viewable target
regions from a given d as Π(d) : D → [0,m], where

Π(d) := |TargetRegionsViewable(d)|. (1)

TargetRegionsViewable(d) denotes the set of viewable
target regions when using kinematic design d. Our goal then
becomes finding an optimal design d∗ such that Π(d) is
maximized.

IV. METHOD

We present a method which optimizes the kinematic
design of a CRISP robot to maximize the robot’s viewable
target regions in a specific anatomy while avoiding collision
with obstacles, and which does so in an asymptotically



optimal way (see Sec. V). The method, detailed in Alg.
1, is based on the global stochastic optimization algorithm
Adaptive Simulated Annealing (ASA) [5], [31], which itera-
tively samples and evaluates candidate designs. We evaluate
candidate kinematic designs with a motion planner designed
specifically for the CRISP robot, and which can determine
the viewable target regions for a given design [3].

Algorithm 1: CRISP Robot Design Optimization
Input:
T : target regions
O: obstacles
iinit: initial number of RRT iterations
i∆: RRT iteration increment
Output: d∗: optimal CRISP design maximizing (1)

1 i← iinit; Temp← Tempinitial; Π̂current ← 0;
Π̂∗ ← 0

2 dcurrent,q0 ← random initial design
3 d∗ ← dcurrent

4 while time allows do
5 d′,q′0 ← SAMPLEDESIGN(dcurrent,Temp, i);
6 targetsViewed← CRISPRRT(d′, i,O,q′0);
7 Π̂′ ← |targetsViewed|;
8 if ACCEPT(Π̂′, Π̂current,Temp) then
9 dcurrent ← d′;

10 Π̂current ← Π̂′;
11 end
12 if Π̂′ > Π̂∗ then
13 d∗ ← d′;
14 Π̂∗ ← Π̂′;
15 end
16 i← i+ i∆;
17 Temp← UPDATETEMPERATURE(Temp);
18 end

A. Exploring Design Space

To explore the CRISP robot’s design space, we leverage
the ASA method. ASA is a global optimization algorithm,
ensuring it does not become trapped in local optima. ASA
works by iteratively improving upon the current best design.
It first samples a candidate design some distance from the
current design in design space (SAMPLEDESIGN at line 5 of
Alg. 1). It then evaluates the quality of the candidate design
(ACCEPT at line 8 of Alg. 1). If the candidate design is of
higher quality than the current design, i.e., Π̂′ > Π̂current,
ASA will accept the candidate design. However, with some
probability ACCEPT will accept an inferior design. It is this
mechanism that allows the algorithm to avoid local maxima.
Both the distance at which it samples and the probability
of allowing an inferior design to be accepted depend upon
a “temperature” value (Temp in Alg. 1). The temperature
is initially set to a large value, but is decreased over time
according to a cooling schedule. In this way, early in the
optimization process the algorithm is much more likely to
explore more distant designs or accept inferior designs, but

later in the process converges to a high quality design. Our
algorithm keeps track of the best design found through the
course of its execution and returns the best design at its
conclusion.

B. Evaluating Candidate Designs

We evaluate the number of target regions viewable by a
candidate design d, denoted Π(d), using a sampling-based
motion planner for the CRISP robot [3]. This approach
enables our method to estimate the total number of targets
which are viewable by a given design, while only consid-
ering those configurations reachable by following collision-
free paths. The motion planner, CRISPRRT, is based on
the Rapidly-exploring Random Tree (RRT) algorithm [32]
and has the property that the estimate of viewable target
regions approaches the correct value as the number of motion
planning iterations rises.

1) Sampling an Initial Configuration: The motion planner
requires as input a collision-free starting configuration q0

from which to plan motions. In the case of the CRISP robot,
q0 depends on d and is non-trivial to generate.

A key challenge with planning the motions for the CRISP
robot is that evaluating the forward kinematics to solve for
the shape of the robot is costly and requires an initial guess
as to the forces and moments being applied to the tubes of
the robot. Generally, if the state of the first configuration is
known then subsequent configurations can be propagated out
using the forces and moments of the previous configuration
to seed that guess. This is a key insight behind the CRISP
motion planner [3]. There is, however, no previous state with
which to seed the initial configuration q0, as all subsequent
configurations are grown from it, and it is unique to a given
design. To solve this problem, we require q0 to be a load free
configuration, i.e., one in which the tubes are applying no
forces or moments to each other. This geometrically restricts
the shape of the robot to a right triangle without any axial
twist applied to the tubes. There are, however, an infinite
number of right triangles that pass through the entry points
defined by d.

We address this challenge by selecting initial configura-
tions uniformly at random from the set of possible initial
configurations which satisfy the design constraints (note that
the set of valid initial configurations from which to sample
can be defined relatively simply geometrically). The sampled
initial configuration is then collision checked against the
environment. If it is found to be in collision, it is discarded
and another starting configuration is sampled. This process
repeats at most i times (the iteration parameter), or until a
collision-free initial configuration is found, whichever comes
first. If a collision-free initial configuration is not found,
the design is assigned a value of 0, and the motion planner
immediately returns.

2) Running the Motion Planner: If a valid initial config-
uration is found, the motion planner is run to determine the
design’s set of viewable targets. The motion planner builds a
tree in configuration space with collision-free configurations
as nodes and collision-free transitions between configurations



as edges. During CRISPRRT (line 6 of Alg. 1), the motion
planner attempts to expand its tree i times, keeping track of
the set of all target regions viewable by the robot configura-
tions represented by nodes of the tree.

A sampling-based motion planner which runs for a finite
duration may only return an approximation of the viewable
set of targets for a given design (as noted in [6] for the
case of reachability). To guarantee that the approximations
increasingly approach the true value, the number of iterations
for which the planner is run is increased by i∆ at each
iteration of Alg. 1 (line 16). This allows the algorithm to
evaluate the quality of candidate designs with increasing
accuracy as the algorithm executes.

V. ANALYSIS

In this section, we prove under mild assumptions the
asymptotic optimality of the proposed method, which pro-
vides the user a guarantee that the method’s solution will
approach a globally optimal kinematic design as more com-
putation time is allowed.

Specifically, we show that the method almost surely con-
verges to a design under which the maximum number of
target regions are viewable. This proof builds on ideas from
[6] and adapts them to the case of maximizing viewable goal
regions. Our approach reduces to showing that the set of
optimal designs has non-zero measure and applying results
from prior work on design optimization based on the moti-
vating property of ASA. We prove this via open sets, which
are either empty or have non-zero measure. In Lemma 1,
we show openness of the set of design-configuration pairs
for which the configuration is reachable under the design, a
useful lemma in its own right. In Lemma 2, we show that the
set of design-configuration pairs from which a given target
region is visible is also open. We combine these results in
Lemma 3 to show that the set of optimal designs is open.
Straightforward application of prior work is then sufficient
to prove asymptotic optimality in Theorem 1.

A. Preliminaries
Our proofs use the fact that the inverse images of open and

closed sets under continuous functions are themselves open
and closed respectively where the inverse image of A ⊆ B
under f : C → B (denoted f−1[A]) is the set {c ∈ C |
f(c) ∈ A}. In the following proofs, we will also frequently
refer to the topological projection (or simply projection) from
a Cartesian product of topological spaces X × Y to X . The
projection of a set Z ⊆ X × Y to X is the set {x ∈ X |
∃y ∈ Y : (x, y) ∈ Z}. Two useful properties of projections
enable the proofs below. First, the projection of an open set
is itself open. Second, if Y is compact, then the projection
X × Y → X of a closed set is itself closed. This latter
property is referred to as the Tube Lemma below.

Assumption 1 (Target Regions as Open Sets): Each
target region Ti ∈ T , is defined as an open set.

Assumption 2 (Continuity of Shape): Shape : D × Q ×
K →W is continuous.

Assumption 3 (Continuity of View): View : D ×Q×V ×
[0, 1]→W is continuous.

B. Sampling Optimal Designs Infinitely Often

Lemma 1: The set of reachable design-configuration
pairs, denoted R, is open.

Proof: Consider a reachable design-configuration pair
(d,q) for which we wish to construct a reachable neighbor-
hood. By definition of reachable, there must exist some path
σ ∈ [0, 1] → Q with σ(0) = q0 and σ(1) = q such that
∀s ∈ [0, 1] : ∀k ∈ K : Shape(d, σ(s),k) ∈ (W \ O). Let
σq′(s) = σ(s) + s · (q′−q). σq′ is continuous by continuity
of σ and σq′(1) = q′ by construction, so σq′ is a path to q′.
We thus have only to show that σq′ is collision-free under
each design d′ for all (d′,q′) in a neighborhood of (d,q).

Observe that the mapping L : D × Q × K × [0, 1] → W
given by

d′,q′,k, s 7→ Shape(d′, σq′(s),k) (2)

is continuous by continuity of σq′ and Shape. We then have
that B = L−1[O] ⊆ D×Q×K×[0, 1] is closed by closedness
of O. Let C be the projection of B to D × Q. C is thus
the set of all (d′,q′) for which σq′(s) is in collision under
design d′ for some s ∈ [0, 1], and is closed by compactness
of K × [0, 1] and the Tube Lemma.

Let C = (D × Q) \ C. Now observe that (d,q) ∈ C
because σq = σ, and σ is collision-free for design d by
definition. But C is open, so it covers some neighborhood
N of (d,q). N is thus a neighborhood of (d,q) in which
σq′ is collision-free under design d′ for all (d′,q′) ∈ N .

Lemma 2: The set of design-configuration pairs from
which target region T is visible, denoted G(T ), is open.

Proof: Consider A = View−1[O], the set of all
design-configuration-ray-distance tuples which yield points
inside obstacles, which is closed because O is closed and
View is continuous. We next construct Â, the set of all
design-configuration pairs from which O is visible. Â is the
projection of A to D×Q, and because V × [0, 1] is compact
and A is closed, Â is also closed by the Tube Lemma.

Let L = {(s, r) | s ≤ r∧(s, r) ∈ [0, 1]2} denote the set of
all (s, r) such that if an obstacle were at distance s, it would
occlude a target region at distance r and observe that this set
is closed by construction. From A, Â, and L, we construct

B = (A× [0, 1]) ∩ (Â× V × L),

which as the finite intersection of finite products of closed
sets is, itself, closed. This is the set of all tuples (d,q,v, s, r)
such that under a design d in configuration q an obstacle at
distance s would occlude a target region at distance r along
ray v.

Let C be the image of B under the projection

d,q,v, s, r 7→ d,q,v, r.

Again by the Tube Lemma, C is closed because B is
closed and the interval [0, 1] is compact. C is the set of
all (d,q,v, r) such that under a design d in configuration q
ray v is occluded at or before a distance r.

Consider U = View−1[T ], the set of all design-
configuration-ray-distance tuples via which T is visible,



which is open by openness of T and continuity of View. V =
U ∩ C is then the set of unoccluded design-configuration-
ray-distance tuples via which target region T is visible.
Furthermore, as the finite intersection of open sets, V is itself
open. But G(T ) is simply the projection of V to D×Q, and
projections preserve openness.

Lemma 3: Given a set of target regions T1, . . . , Tm, the
set of designs under which a maximum number of these
target regions are viewable, denoted D∗, is open.

Proof: Let Ri = G(Ti)∩R, the set of reachable design-
configuration pairs from which Ti is visible. By Lemma
1, R is open, and by Lemma 2, G(Ti) is open, so their
intersection Ri is also open. Let Di denote the projection of
Ri to its designs. Projection is an open mapping, so each Di

is open. Let m∗ be the number of target regions viewable
by an optimal design. Observe that the union of all m∗-wise
intersections of {D1, . . . ,Dm} is the set of optimal designs.
This is a finite union of finite intersections of open sets, and
is thus open itself.

Corollary 1: D∗ has non-zero measure.
Proof: By Lemma 3, D∗ is open, and by definition, it

contains an optimal design. Every non-empty open set has
non-zero measure.

Corollary 2: Designs from D∗ will be sampled and eval-
uated infinitely often by Alg. 1.

Proof: This result follows readily from the fact that
ASA samples from non-zero measure sets infinitely often
[5], [31].

C. Asymptotic Optimality

We conclude the asymptotic optimality of our algorithm
by invoking Corollary 2, established above, and Theorem 5
of [6] which extends directly to the objective of visibility.

Let (Y)k∈N denote the sequence of random variables such
that for each k ∈ N, Yk denotes the maximum number of
viewable target regions attained over all the designs sampled
in optimization iterations 1, . . . , k. Let m∗ be the number of
target regions viewable by an optimal design, as in the proof
of Lemma 3.

Theorem 1 (Asymptotic Optimality): The solution gener-
ated by Alg. 1 almost surely converges to a globally optimal
design d∗ ∈ D∗, i.e.,

P
(

lim
k→∞

Yk = m∗
)

= 1.

For completeness, we note that as an implementation detail
of our method, the robot’s initial configuration depends upon
the design. The theorem above continues to hold in this
context because the initial configuration may conceptually
be incorporated into the robot’s design space by introducing
D′ = D × Q and letting Shape′(d′,q,k) = Shape(d,q +
q0,k) and View′(d′,q,v, r) = View(d,q+ q0,v, r) where
d′ = (d,q0).

VI. RESULTS

We evaluate the performance of our algorithm, denoted
ASA+MP, in two scenarios. Scenario 1 is an anatomically
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Fig. 4. Two views of the environment for Scenario 1. The environment is
a flat-topped ellipsoidal volume with 5 internal cylindrical obstacles. The
line segments which define the valid points of entry are shown as green
lines on the top of the volume. The pink spheres (down-sampled for ease
of visualization) represent the target regions for the motion planner to view
under a sampled design, as well as the obstacles which must be avoided by
the robot’s geometry during planning.
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Fig. 5. Scenario 2 is a segmented pleural effusion volume from a real
patient CT scan. The pleural effusion is shown in pink, displacing the
collapsed lung (blue). The valid entry line segments (green) are placed such
that the robot can enter the pleural space between the ribs. The target regions
are rendered as pink spheres in the bottom two images, and which serve
both as target regions to be viewed under a design and as obstacles for the
motion planner.

inspired but generic volume defined by an ellipsoid with a
flattened side and with cylindrical obstacles in the interior
(see Fig. 4). Scenario 2 is based on a pleuroscopic scenario
using patient anatomy (see Fig. 5). In Scenario 2, the CRISP
robot enters the volume of a pleural effusion, a serious
medical condition which causes the collapse of a patient’s
lung [4]. The robot enters the effusion space between the
patient’s ribs and maneuvers inside the space to enable a
physician to view the internal surface of the volume.

For both scenarios we consider a CRISP robot with a
camera tube grasped by one snare tube. In the experiments
we define the CRISP robot’s set of valid entry points into the
volume as a sequence of line segments, on the top surface
of the volume for Scenario 1 and between the patient’s ribs
for Scenario 2. In both scenarios, the pink spheres shown in
Figs. 4 and 5 were used as both the set of target regions to be
viewed and as obstacles for the motion planner. All results
were generated on a 3.40GHz Intel Xeon E5-1680 CPU with
64GB of RAM.



We compare our method against an implementation which
uses the Nelder-Mead algorithm to explore the design space,
and which has been used successfully in concentric tube
robot design optimization before [8]. Even when using
Nelder-Mead to explore the design space, we still use the
CRISP motion planner to evaluate the candidate designs,
keeping in the spirit of our desire to consider only collision-
free motions. We represent this as NM+MP.

For Scenario 1 we allow both algorithms to optimize
designs for 16 hours and average the results over 20 different
runs. For Scenario 2 we run each algorithm for 8 hours and
average over 5 runs. As can be seen in Fig. 6, ASA+MP per-
forms well in both scenarios. In Scenario 1, ASA+MP goes
from designs that are able to view approximately 20% of
the target regions early in the optimization to designs which
are able to view approximately 64% of the target regions
late in the optimization. In Scenario 2, ASA+MP goes from
designs that can view approximately 14% to designs that can
view approximately 46% of the target regions. ASA+MP also
outperforms NM+MP in both Scenarios, finding kinematic
designs that enable more target regions to be viewed in less
computation time.

Fig. 7 shows a comparison between a design early in
the ASA+MP optimization process and a design late in
the optimization process for Scenario 2. The ability of the
later design to visualize a significantly larger percentage
of the target regions demonstrates the efficacy of design
optimization in this scenario.

VII. CONCLUSION

Design optimization can have a large impact on a robot’s
ability to successfully perform a task. This is especially im-
portant in surgical robotics where positive patient outcomes
are so vital. In this work, we demonstrated a method for
optimizing the kinematic design of the CRISP robot for
endoscopic purposes on a patient-specific basis. Our method
leverages Adaptive Simulated Annealing (ASA) combined
with sampling-based motion planning to ensure that candi-
date designs are evaluated in such a way that only valid
motions, i.e., motions which do not cause the robot to
collide with the patient’s anatomy, are considered. The results
show that the method is able to significantly improve the
performance of the robot.

In future work, we plan to expand upon our results to
help bring the CRISP robot closer to clinical use. We plan
to implement and evaluate this design optimization method
and the motion planner on a physical prototype of the robot.
Because two designs may be near optimal but view different
regions of the anatomy, we also plan to extend the work to
optimize sets of designs to maximize the visibility of target
regions, as multiple designs could potentially be employed
during a single procedure. We also believe that our method
and analysis can be extended for purposes of asymptotically
optimal design optimization with respect to other continuous
objectives and intend to pursue this idea as well. Due to the
hours-long scale of the optimization, the current work would
require time between imaging and the use of the robot in the
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Fig. 6. The percent of target regions viewed by the best design found
over time for Scenarios 1 (top) and 2 (bottom). The blue line represents
the results for the ASA algorithm with motion planning, and the red line
represents results for the Nelder-Mead algorithm with motion planning. The
results are averaged over multiple runs, 20 for Scenario 1 and 5 for Scenario
2.

clinical setting. The current time-scale would limit the use of
this method to procedures for which that delay is clinically
feasible, such as the pleuroscopic procedure described above.
We would like to explore ways to make the optimization
faster, so that it has the potential to be used in more emergent
clinical procedures as well.
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