
Actuator Networks for Navigating an Unmonitored Mobile Robot

Jeremy Schiff§, Anand Kulkarni†, Danny Bazo§, Vincent Duindam§,
Ron Alterovitz§, Dezhen Song‡, Ken Goldberg§†

§ Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720-1770, USA
† Dept. of Industrial Engineering and Operations Research, University of California, Berkeley, CA 94720-1777, USA

‡ Dept. of Computer Science, Texas A&M University, College Station, TX, 77843-3112, USA
{jschiff|anandk|dbazo|vincentd|ronalt|goldberg}@berkeley.edu, dzsong@cs.tamu.edu

Abstract— Building on recent work in sensor-actuator net-
works and distributed manipulation, we consider the use of
pure actuator networks for localization-free robotic navigation.
We show how an actuator network can be used to guide an
unobserved robot to a desired location in space and introduce
an algorithm to calculate optimal actuation patterns for such a
network. Sets of actuators are sequentially activated to induce
a series of static potential fields that robustly drive the robot
from a start to an end location under movement uncertainty.
Our algorithm constructs a roadmap with probability-weighted
edges based on motion uncertainty models and identifies an
actuation pattern that maximizes the probability of successfully
guiding the robot to its goal.

Simulations of the algorithm show that an actuator network
can robustly guide robots with various uncertainty models
through a two-dimensional space. We experiment with additive
Gaussian Cartesian motion uncertainty models and additive
Gaussian polar models. Motion randomly chosen destinations
within the convex hull of a 10-actuator network succeeds with
with up to 93.4% probability. For n actuators, and m samples
per transition edge in our roadmap, our runtime is O(mn6).

Keywords: Sensor Networks, Actuator Networks, Robotic
Navigation, Potential Fields, Motion Planning

I. INTRODUCTION

As robots become smaller and simpler and are deployed in
increasingly inaccessible environments, we need techniques
for accurately guiding robots in the absence of localization by
external observation. We explore the problem of observation-
and localization-free guidance in the context of actuator
networks, distributed networks of active beacons that impose
guiding forces on an unobserved robot.

In contrast to sensor networks, which passively observe
their environment, actuator networks actively induce a phys-
ical effect that influences the movement of mobile elements
within their environment. Examples include light beacons
guiding a robot with an omni-directional camera through the
dark, electric fields moving a charged nano-robot through
a fluid within a biological system, and radio transmitters
on sensor motes guiding a robot with a single receiver.

*This research is supported in part by NSF CISE Award: Collabo-
rative Observatories for Natural Environments (Goldberg 0535218, Song
0534848), Netherlands Organization for Scientific Research (NWO), NIH
(F32CA124138), by NSF Science and Technology Center: TRUST, Team for
Research in Ubiquitous Secure Technologies, with additional support from
Cisco, HP, IBM, Intel, Microsoft, Symmantec, Telecom Italia and United
Technologies, and by the AFOSR Human Centric Design Environments
for Command and Control Systems: The C2 Wind Tunnel, under the
Partnership for Research Excellence and Transitions (PRET) in Human
Systems Interaction.

Fig. 1. An actuator network with sequentially activated actuators triplets
(shown as squares) driving a mobile robot toward an end location. The
robot is guided by creating locally convex potential fields with minima at
waypoints (marked by ×s).

We consider a network of beacons which exert a repellent
force on a moving element. This repellent effect models
many systems for which purely attractive models for beacon-
assisted navigation are not realistic or practical. The repulsive
effect of an actuator network permits the guided element
to pass through specific points in the interior of a region
while avoiding contact with the actuators themselves, unlike
traditional attractive models for beacon-assisted navigation.
Due to their simple structure, actuators can be low-cost,
wireless, and in certain applications low-power.

In this paper, we consider a specific application of actuator
networks: guiding a simple mobile robot with limited sensing
ability, unreliable motion, and no localization capabilities.
A motivating scenario for such a system emerges from
the potential use of low-cost robots in hazardous-waste
monitoring and cleanup applications, such as the interior of
a waste processing machine, nuclear reactor, or linear ac-
celerator. Robots in these applications must execute cleanup
and monitoring operations in dangerous, contaminated areas
where, for safety or practical reasons, it is impossible to
place human observers or cameras, or to precisely place tra-
ditional navigational waypoints. In this scenario, an actuator
network of radio or light beacons may be semi-randomly
scattered throughout the region to aid in directing the robot
from location to location through the region. By shifting
responsibility for navigation to a network of actuators which

directs a passive robot, smaller and more cost-effective robots
may be used in these applications.

We consider the 2D case, where the actuator network
consists of beacons at different locations in a planar environ-
ment. The actuator network is managed by control software
that does not know the position of the robot, but it is aware
of the positions of all of the actuators. Such software may
be either external to the system, or distributed across the
actuators themselves, as in the case of a sensor network.
We assume only that the robot’s sensor is able to detect
and respond consistently to the strength and direction of
each actuation signal. Such a general framework accurately
represents a wide variety of real-world systems in use today
involving deployed navigational beacons, while significantly
reducing the technical requirements for both the beacons and
the robots.

We present an algorithm that sequentially switches be-
tween sets of actuators to guide a robot through a planar
workspace towards an end location as shown in Figure 1.
Using three non-collinear actuators, each one generating a
repellent force field with intensity falling off inversely pro-
portional to the square of the distance, we generate potential
fields that drive the robot from any position within the convex
hull of the actuators to a specific position within the interior
of the triangle formed by the actuators (the local minimum of
the potential field). The optimal sequence of potential fields
to move the robot to a specific point within the interior of the
workspace is determined using a roadmap that incorporates
the possible potential fields as well as uncertainty in the
transition model of the robot. Despite this uncertainty and the
absence of position measurement, the locally convex nature
of potential fields ensures that the robot stays on track. We
present results from simulated actuator networks of small
numbers of beacons in which a robot is successfully guided
between randomly chosen locations under varying models
of motion uncertainty. With as few as 10 actuators in a
randomly-placed actuator network, our algorithm is able to
steer a robot between two randomly selected positions with
probability 93.4% under motion uncertainty of 0.2% standard
deviation Gaussian Polar motion uncertainty (perturbing the
robot’s magnitude and angle with additive Gaussian motion
uncertainty).

II. RELATED WORK

There is a long history of investigation into the charac-
teristics of potential fields induced by physical phenomena
and how objects are affected by these fields. Some of the
earliest work, related to the study of gravitational, electric
and magnetic fields, as well as topological properties of such
fields, was pioneered by Newton, Gauss, Laplace, Lagrange,
Faraday, and Maxwell [1], [2].

Potential functions for robotic navigation have been stud-
ied extensively as tools for determining a virtual field which a
robotic element can follow to an end location while avoiding
obstacles. See Choset et al. [3] for an in-depth discussion.
Khatib proposed a model where an end location is repre-
sented as an attractor, obstacles are represented as repulsers,

and the overall field is determined by the superposition of
these fields [4], [5]. While these fields are typically referred
to as potential fields, they are actually treated as vector fields
that provide the desired velocity vector for the robot at any
location in space. While moving, the robot performs simple
gradient descent on this space. Motion planning requires
defining attractive and repulsive fields such that the robot
will always settle at a local minimum created at the end
location. Several extensions exist to this classical approach,
for example to prevent the robot from getting stuck at a local
minimum [6] and to deal with moving obstacles [7], [5].

Rimon and Koditschek addressed this problem by deter-
mining the attractive and repulsive potential functions neces-
sary to guarantee unique minima [8]. They accomplished this
by defining functions over a “sphere world” where the entire
space and all obstacles were restricted to be n-dimensional
spheres. They discovered a mapping from this solution to
other types of worlds such as “star-shaped worlds”, allowing
for a general solution to this problem. Connolly et al. [6] use
harmonic functions in the repulsive and attractive functions
to avoid local minima. In our work, we also address the
problem of local minima, but are restricted in our choice of
potential functions.

Whereas past research has treated modeling a robot’s
environment and guidance instructions as an arbitrary virtual
potential function, our work considers a network of actuators
which emit signals from given, fixed positions and explicitly
models physical phenomena. In our formulation, these actu-
ators are the sole contributors to the potential field, rather
than the environment or guidance information. In addition,
the potential fields in our algorithm transition at discrete time
steps, and problems related to local minima are avoided by
steering the robot through waypoints, rather than directly
from start to end location.

The concept of distributed actuation has been studied in
various contexts. Li et al. [9] examined how to directly
apply potential functions in a distributed fashion over sen-
sor networks, focusing on formulating the algorithm in a
distributed manner. Pimenta et al. [10] addressed the robot
navigation problem by defining force vectors at the nodes of
a graph. They assume, however, that nodes can be arbitrarily
added to the graph, contrary to our problem formulation in
which the actuators are provided as input and are fixed.
Finally, research in distributed manipulation has examined
how to leverage many actuators to perform coordinated
manipulation, focusing primarily on the use of vibratory
fields to place and orient parts [11], [12], [13], [14], [15].

To actively construct potential fields to steer a mobile robot
subject to uncertainty in motion and sensing, we build on
previous results in motion planning under uncertainty [16].
Motion planners using grid-based numerical methods and ge-
ometric analysis have been applied to robots with motion and
sensing uncertainty using cost-based objectives and worst-
case analysis [17], [18], [16]. Markov Decision Processes
have been applied to motion planning with uncertainty in
motion, but these methods generally require state sensing
and are not directly applicable to actuator networks [19],

[20], [21], [16].
In this paper, we consider a hybrid sensing uncertainty

model: the actuator network cannot sense the mobile robot
but the mobile robot can sense the potential field. Lazanas
and Latombe proposed a landmark-based approach in which
the robot has improved sensing and actuation inside land-
mark regions, reducing the complexity of the motion plan-
ning problem to moving between these regions [22]. An
actuator in an actuator network can be viewed as a gen-
eralization of a landmark that can be controlled and can
exert influence over the mobile robot at arbitrary distances.
As with sensing uncertainty, this paper considers a hybrid
actuation uncertainty model: the actuator network generates
a precise potential field with no uncertainty while the mobile
robot is subject to uncertainty in its motion. To address
motion uncertainty, Alterovitz et al. introduced the Stochastic
Motion Roadmap (SMR), a sampling-based method that
explicitly considers models of motion uncertainty to compute
actions that maximize the probability that a robot will reach
an end location [21]. As in SMR, we use the objective
of maximizing probability of success over a roadmap. But
unlike SMR, which assumes perfect sensing, the maximum
probability path for an actuator network must be computed
before plan execution is begun since sensing feedback is not
available.

III. PROBLEM FORMULATION

A. Assumptions

We consider the control of a single mobile robot in a
planar environment, influenced by an actuator network. The
n actuators are located at known positions xi ∈ R2. Each
actuator can be controlled independently to produce a signal
with piece-wise constant amplitude ai(t) ≥ 0. Each actuator
generates a radially symmetric potential field Ui of the form

Ui(x) =
ai

|x− xi|
(1)

The direction and magnitude of the gradient of this field can
be observed from any location x ∈ R2 and are given by the
vector field Fi

Fi(x) =
∂Ui

∂x
= −ai(x− xi)

|x− xi|3
(2)

i.e. the signal strength |Fi(x)| is inversely proportional to
the square of the distance to the actuator, as is common for
physical signals.

The aim of the actuator network is to guide a mobile
robot along the direction of steepest descent of the combined
potential field U(x) =

∑
i Ui(x). The position of the robot

as a function of time is denoted by p(t) ∈ R2, and the robot
is assumed to have sufficient local control to be able to move
approximately in a given direction vector v (relative to its
own coordinate frame). The desired motion direction v is
equal to the direction of steepest descent of the combined
potential field U and is hence given by the vector sum

v = −
∑

i

Fi(x) =
∑

i

ai(x− xi)
|x− xi|3

(3)

Under this control strategy, each of the actuators serves
effectively as a “robot repulser”, causing the robot’s direction
of motion to be determined by the total combined force from
all actuators. We only assume that the robot can continuously
measure the direction and strength of the superimposed
actuator signals. In particular, no global position sensors or
odometry is required. Its motion is described by a general
model ṗ = R(v), which may include stochastic components
to represent sensor and actuator uncertainty, or general un-
certainty in movement across the workspace due to viscosity
in a fluid environment, uneven terrain causing wheel slip, or
simply unreliability in the robot’s design.

The design of a suitable sensor for the robot to measure
the actuator signals depends on the type of actuation used.
For light-based actuation, one could use an omni-directional
camera. Each actuator signal from a certain direction causes
a specific spot in the image to light up with a brightness
depending on the actuator strength and distance. The desired
motion vector v can then be computed simply by adding the
force directions corresponding to all image pixels, weighted
by their brightness.

A centralized controller is assumed to know the location of
the actuators and to be able to control the actuator amplitudes
in a time-discrete manner. It does not have other sensing
information; in particular, it cannot measure the robot’s
position.

B. Inputs and Output

The inputs of the control algorithm are the initial location
p0 = p(0) ∈ R2, the end location pe ∈ R2 of the robot, and
the locations of each actuator xi ∈ R2. The actuator locations
can either be determined a priori, or via some localization
scheme. The key aspect is that the actuators will not observe
or track the robot.

The proposed algorithm returns a sequence of actuator
amplitudes {ai(tj)} at discrete time instants tj that maxi-
mizes the probability that the robot successfully moves from
the start location p0 to the end location pe. If no path
from p0 to pe can be found, the algorithm returns the
empty sequence. Each set of amplitudes contains exactly
three nonzero values corresponding to a particular triangle
of actuators and an associated start and destination location.
The use of only three actuators at a time has the advantage
of simplifying the analysis of the system and potentially
reducing power consumption of the network by limiting the
number of active actuators at any time. To conserve power,
all idle actuators can go into a low-power state. Each time
instance is separated by a sufficiently large duration that a
robot starting at the associated start location will by this time
either have migrated to the associated target location moving
at minimum velocity or will be outside the actuator triangle
and get progressively farther away. This time is determined
by the minimum speed of the robot.

C. Motion Uncertainty

To investigate the utility of actuator networks in steering
robots with uncertain motion, we considered two uncertainty

models R(v): one using additive random Gaussian noise on
the robot’s Cartesian coordinates, and one using additive
random Gaussian noise on the robot’s polar coordinates.
In other words, the Cartesian motion uncertainty model
describes the uncertain motion of the robot as[

ṗx

ṗy

]
= ṗ = R(v) =

[
N
(
vx, σ

2
)

N
(
vy, σ

2
)] (4)

while the polar motion uncertainty model is given by[
ṗx

ṗy

]
= ṗ = R(v) =

[
r cos(θ)
r sin(θ)

]
(5)

where r and θ are drawn from Gaussian distributions as

r = N
(
|v|, σ2

)
θ = N

(
atan2(vy, vx),

σ2

4π2

)
IV. MOTION CONTROL USING ACTUATOR NETWORKS

To solve the problem of finding a valid actuation sequence
(if one exists), the algorithm first generates all possible

(
n
3

)
triangles that can be formed using the n actuators. Then,
it computes the incenters of these triangles (as discussed in
Section IV-A) to be used as local minima of the potential
fields. These incenters define the vertices in a graph, and the
next step of the algorithm is to determine the weights of all
possible edges between the vertices. We define the weight
of an edge to be the probability that the robot successfully
navigates from one vertex to the other, as defined by the robot
motion model R(v). The resulting graph defines a roadmap
for the robot, and the last step of the algorithm is to insert
the start and end locations into the roadmap and determine
the path between them that maximizes the probability of
successfully reaching the end location.

A. Local control using actuators triplets

The following assumes the actuators we choose are not
collinear. Consider a potential field U generated by an
actuators triplet i, j, and k (and all the other actuators in
the network set to zero amplitude). If the amplitudes of the
actuator triplet is strictly positive, the potential field will
have a local minimum at some point inside the triangle.
This location is called the waypoint of the potential field.
In our global algorithm, we may traverse many waypoints to
get from the start to the end location. The final waypoint is
defined to be the end location. For a given triangle structure,
we define the feasible region as the set of locations that can
be made waypoints, that is, local minima of the potential
field. The feasible region is clearly strictly smaller than the
triangle defined by the active actuators.

For a given waypoint x, C(x) is the capture region of a
waypoint as the set of all points x ∈ R2 such that, when
following the direction of steepest descent from x, one will
eventually arrive at x. Some examples of capture regions for
various triangles and waypoints are given in Figure 2.

For a point x̄ to be a local minimum of the potential field,
the gradient ∂U

∂x at x̄ should be zero, and the Hessian matrix

Fig. 2. Examples of two different triangles and three different waypoints
(denoted as circles) and their capture regions (shaded areas) for both
triangles. The incenter of each triangle is marked with a ’+’.

Fig. 3. Example of a triangle with its incenter.

∂2U
∂x2 should be positive definite. This means that the actuator
amplitudes ai, aj , ak > 0 must be chosen such that

∂U

∂x
(x̄) =

[
xi−x̄
|x̄−xi|3

xj−x̄
|x̄−xj|3

xk−x̄
|x̄−xk|3

]ai

aj

ak

 = 0 (6)

The space of ai satisfying Equation 6 is a one-dimensional
vector space, but since both Equation 6 and the signature of
the Hessian are scale invariant, checking whether x̄ is in the
feasible region reduces to 1) checking whether the elements
of any solution vector ai of Equation 6 have equal sign (all
positive or all negative), and if so 2) checking whether for a
choice of positive ai the Hessian at x̄ is positive definite.

In the global control law described in the following
section, we choose a specific point in each triangle to be the
waypoint, namely the incenter. The incenter of a triangle
is the center of its inscribed circle, or equivalently, the
intersection of the three angle bisectors of the triangle’s
vertices (Figure 3). In extensive simulation of many different
triangles shapes, the incenter was always found to be in the
feasible region, and when chosen as the waypoint, the capture
region of the incenter was found to generally be larger than
other centers, including the centroid. While the incenter has
performed well, other ways of determining waypoints can be
considered. A formal proof of these favorable properties of
the incenter is the subject of future work.

B. Global control using switching potential field

To extend the previously described static local control law
from an actuator triplet to a full actuator network, we define a
roadmap that robustly guides the robot from its start location,
via the incenters of successive triangles defined by actuator

Algorithm 1 The Actuator Network Algorithm
1: triangles ← computeTriangles(actuatorLocations)
2: vertices ← computeIncenterLocations(triangles)
3: graph ← computeEdgeWeights(vertices)
4: path ← computePath(startVertex, endVertex, graph)

triplets in the network, to its end location. The steps in the
algorithm are as follows (Algorithm 1):

1) Compute all
(
n
3

)
triangles that can be generated by the

n actuators in the network.
2) Compute the incenters of the triangles and designate

these incenters as vertices in a graph.
3) For every pair of vertices (v1, v2) in the graph, add

a directed edge from v1 to v2 if v1 is in the capture
region of the potential field with local minimum at
v2. Use the robot motion model R(v) to compute the
probability P (v2|v1) that the robot moves from v1 to
v2 in this potential field. Set the edge weight to be the
negative log of this probability: − logP (v2|v1).

4) The weighted graph forms a roadmap for the robot.
Add the start location and end location to the graph
and run Dijkstra’s algorithm [16] to obtain the optimal
path from start to goal, or, if no such path exists, the
empty sequence.

The resulting shortest path is a sequence {vi} of vertices, or,
with the exception of the start and end location, a sequence
of incenters. We can robustly drive the robot from incenter to
incenter by successively switching the amplitudes such that
the next incenter vi+1 in the path becomes the new waypoint.
Since the point vi is in the capture region of vi+1, the robot
will be driven to the end location. Even though no position
sensing mechanism for the robot is used, and even though the
robot model contains stochastic components, the convergent
nature of the potential fields will ensure that the position
motion uncertainty does not grow unbounded. As long as
the actuators do not move, step 4 can be repeated using the
same roadmap to solve multiple queries for different start
and end locations.

C. Computational Complexity

In step 1 with n actuators, we explore O(n3) triangles. For
step 2, it takes O(1) time to compute an incenter location
and associated actuator amplitudes, thus it takes O(n3) to
complete this step. For step 3 with m rejection samples per
edge, there is an edge for each pair of incenters, thus this step
will take O(mn6). For step 4, there are O(n3) vertices and
O(n6) edges. Because Dijkstra’s algorithm takes O(|E| +
|V | log |V |), step 4 takes O(n6). Thus, the total runtime is
O(mn6).

While this result is polynomial in m and n, for certain
applications requiring very fast construction of actuation
strategies for very large actuator networks, it may be de-
sirable to further reduce this runtime. The most immediate
way to reduce the runtime is to not consider all possible(
n
3

)
triangles. Instead, we can modify step 1 in Section IV-B

only use triangles of reasonable size (not too small or too
large) or discard triangles for which the capture region is
fully contained in the capture region of other triangles.

It is also important to note that the computation of the
roadmap is an offline procedure that must be carried out
only once during the preparation of the roadmap for a given
actuator network. In addition, many implementations of an
actuator network may self-correct for an increased number of
actuators by providing additional resources for computation
along with each actuator. The (notably parallel) problem of
computing edge weights could be solved using distributed
computation across the computation elements.

D. Implementation aspects

To compute the motion probabilities for the edge weights
in step 3 of the algorithm, we perform rejection sampling
with m samples. For an edge from v1 to v2, we compute
the robot motion from v1 by integrating the robot velocity
R(v) using Euler integration. If, after a certain integration
interval τ the robot is within some small distance ε of v2,
we consider the motion successful, and failure otherwise.
Thus, each edge’s weight is determined by the percentage of
successful transitions from v1 to v2. Valid values for ε depend
on the specific robot’s size relative to the workspace and
sensitivity to motion uncertainty, while τ depends strictly on
the size of the region and the natural velocity of the robot. For
instance, τ may be defined as the maximum amount of time
required for a robot to move linearly between any two points
in the planar region at its minimum velocity with no motion
uncertainty, and ε may be set to 1% of the minimum distance
between any two actuators. Tighter bounds are possible for
faster movement. Even though v1 may be in the capture
region of v2, sensor and actuator uncertainty (as captured by
R(v)) can cause the robot to move temporarily outside the
capture region, after which it will diverge and not succeed in
reaching the current waypoint. The probability of success is
determined by the fraction of the samples that successfully
reach the waypoint.

The weights of the edges are taken to be the negative
logarithm of the probability of success. The probability of
successfully reaching the end location along a certain path
is equal to the product of the probabilities of successfully
moving along the edges of the path. Since multiplying
probabilities Pi is equivalent to adding log-probabilities
logPi, maximizing the probability of success along a path
is equivalent to minimizing the sum of the negative logs
of the probabilities along a path. Thus, we can efficiently
compute the path with the maximum probability by using
Dijkstra’s algorithm from p0 to pe using the negative log of
the probability at each edge.

V. SIMULATION EXPERIMENTS

All simulation experiments were implemented in Matlab
and executed on PCs with a 2.0GHz Intel processor and 2GB
of RAM.

We fixed the workspace to be 5×5 units, and used m = 10
rejection samples. We explored the algorithm’s effectiveness

Fig. 4. Simulation result averaging over 100 trials of an actuator network
and 100 start-end location pairs, with n = 5 . . . 10 actuators and two
placement strategies: border placement and interior placement. Results for
each are shown with start and end locations chosen randomly across the
entire workspace or only within the convex hull of the actuators. These
simulations used 0.01 standard deviation polar motion uncertainty.

under a variety of actuator location distributions (Section V-
A) and motion uncertainty models (Section V-B). For every
choice of actuator network and robot uncertainty model, we
randomly chose k = 100 start and end locations in the
workspace, computed the optimal paths using Algorithm 1,
and simulated the motion of the robot in the actuator net-
work.

For a given actuator network topology, we compute the
average probability of the robot successfully traveling from
a random start location to a random end location.

A. Varying Actuator Placement

We randomly placed n ∈ {5, . . . , 10} actuators throughout
the workspace according to two distribution models. In the
bordered distribution strategy, each actuator was placed at
a location chosen uniformly at random on the border of
the workspace. In the interior distribution strategy, actuators
were scattered uniformly at random throughout the entire
workspace. For each actuator placement model and for each
possible number of actuators from 5 to 10, 100 random
actuator geometries were produced. The robot motion model
was set to have zero motion uncertainty and a probabilistic
roadmap was constructed according to the above algorithm.

The results are shown in Figure 4. We examine the two
cases where 1) the start and end locations are within the
convex hull of the actuators and 2) the start and end locations
are anywhere in the workspace. In the first case, the data
suggests that the border selection strategy performs just as
well as the interior selection strategy. Because the convex-
hull eliminates start/end locations that are outside the convex
hull and therefore impossible to reach, we can see that there
is no robustness advantage for one method over another.
As the algorithm performs comparably in the convex-hull
restricted test, the border-selection method is better in the
full-workspace experiment, because on average, its convex
hull will cover a larger area, which in turn means more
start/end locations will be reachable.

As would be expected, increasing the number of actuators
increases the probability of success with the workspace
model. We can see that the probability of success also im-
proves as we increase actuators for the convex-hull method.
We discuss this property further in Section V-B.

The simulation results suggest lower bounds on the ef-
fectiveness of smart actuator placement strategies. Better
results can be obtained by (deterministically) optimizing
the placement of actuators to 1) maximize the area of the
workspace that falls into the capture region of at least one
triangle, and 2) maximize the connectivity between points
in the workspace, particularly when likely start and end
locations are known in advance. Such an optimal-placement
algorithm will be the subject of future research.

B. Varying Motion Uncertainty

For networks of n ∈ {5, . . . , 10} actuators, we examined
how the probability of successful completion varied for
both the Cartesian motion uncertainty model described in
Equation 4 and the polar motion uncertainty model described
in Equation 5. We experiment with different errors (standard
deviations σ ∈ {0, 0.01, 0.05, 0.1, 0.2}). The results are
summarized in Figure 5, and Figure 6 shows an example
of the roadmap generated by the algorithm.

The figure shows that increasing the motion uncertainty
will result in reduced probability of success, for both motion
uncertainty models and any number of actuators. Under large
motion uncertainty, the robot is more likely to drift outside
the capture region, resulting in failure to reach the next
waypoint and hence to successfully complete the path to the
end location.

Because these examples are only of start/end locations
within the convex hull, adding actuators has two effects. As
we increase the number of actuators, the area of the convex
hull will become larger, which means that the average path
length between start/end goals in the convex hull increases,
making the effects of the motion uncertainty more significant.
More actuators also means more flexibility in the number of
paths, due to an increased number of incenters and overlap-
ping triangles. As we increase the number of actuators, the
incremental addition to the convex hull will decrease, and
the number of additional waypoints will grow quadratically
with the number of new actuators. Thus, for larger motion
uncertainty models, the probability of success first decreases
and then increases. This effect is more extreme depending
on how significant the motion uncertainty is.

For 10 actuators, standard deviations of 0.0, 0.01, 0.05,
0.1, and 0.2, and Cartesian motion uncertainty, the average
probabilities of success are 94.5%, 93.4%, 82.5%, 49.6%,
and 19.8%. For Polar motion uncertainty, the average prob-
abilities of success are 93.3%, 91.0%, 49.8%, 32.4%, and
12.2%.

VI. CONCLUSIONS AND FUTURE WORK

We consider the problem of localization-free guidance of a
robot using an actuator network of beacons for use in steering
simple, low-cost robots. The Actuator Networks system and

(a) Average success rate under Cartesian motion uncertainty.

(b) Average success rate under polar motion uncertainty.

Fig. 5. Comparison of the results of varying Gaussian motion uncertainty
for a fixed set of actuator locations under two motion uncertainty models,
with start and end locations chosen within the convex hull of the actuators.

algorithm steer unmonitored robots between points using an
external network of actuators and a probabilistic roadmap.
Our algorithm was able to produce relatively high proba-
bilities of successful navigation between randomly-selected
points even in the presence of motion uncertainty.

The low number of actuators necessary for successful
steering in our technique has important consequences for the
robustness of these methods in practice. An inexpensive way
to guarantee continuous operation of an actuator network is
to use more than the minimum number of actuators required
for high-probability performance; as an example, with 20
actuators under border placement and 1% Cartesian motion
uncertainty, even if half of the actuators eventually fail, the
probability of completion would not drop significantly.

We plan to explore several extensions in future work. The
technique of actuator networks can be extended to consider
obstacles in the workspace. An obstacle can affect an Ac-
tuator Network in three ways: (1) the obstacle restricts the
motion of the mobile robot in the workspace, (2) the obstacle
blocks the signal from an actuator, and (3) the obstacle causes
multi-path effects as the signals from the actuators reflect
off the obstacles. To model case 1, we can represent obsta-
cles implicitly in the graph via the edge weights encoding

(a) Triangles and corresponding in-
centers (denoted ∗) generated from
8 randomly placed actuators.

(b) Roadmap showing edges be-
tween incenters and an example path
(thick line) through the network.

Fig. 6. Example of a simulation of the actuator-networks algorithm with
n = 8 actuators and Cartesian motion uncertainty with σ = 0.01. The
actuators are placed randomly on the border of a square workspace, the
incenters of all possible triangles between them form vertices in a roadmap
with edges containing the probability of successful transition by activation
of an actuator triplet.

transition success probabilities. As discussed in Sec. IV-D,
we estimate the probability P (v2|v1) of successfully moving
from vertex v1 to vertex v2 by simulating the robot’s motion
as it follows the gradient of the signal generated by the
actuators. If the mobile robot’s motion intersects an obstacle
during a simulation, we determine that a failure has occurred
in our rejection sampling step. For case 2, we can modify
the simulation so the gradient used by the mobile robot does
not include signal from a particular actuator if a line segment
between that actuator and the mobile robot’s current location
intersects an obstacle. Since the probability of success for
edges in the graph will decrease when obstacles are present,
the number of actuators necessary in order to find a feasible
plan will increase. Case 3 is known to be difficult to model
effectively, and is a significant problem for certain domains
such as RSSI localization. As future work, we can also
evaluate how different multi-path models will affect the robot
by including this in the determination of the edge-weights in
a similar fashion as case 2.

We would also like to explore the alternative problem of
designing an algorithm for placement of actuators.

VII. ACKNOWLEDGMENTS

We thank the members of the UC Berkeley Automation
Sciences Lab for their feedback and support, including
particularly helpful contributions from Ephrat Bitton, Jijie
Xu, and Menasheh Fogel. We also thank Claire Tomlin, and
Shankar Sastry for their support.

REFERENCES

[1] O. D. Kellogg, “Foundations of potential theory,” 1969.
[2] J. C. Maxwell, “On hills and dales,” The Philosophical Magazine,

vol. 40, no. 269, pp. 421–427, 1870.
[3] H. Choset, K. M. Lynch, S. Hutchingson, G. Kantor, W. Burgand,

L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations, 1st ed. MIT Press, 2005.

[4] O. Khatib, “Commande dynamique dans l’espace opérationnel des
robots manipulateurs en présence d’obstacles,” Ph.D. dissertation,
École Nationale Supérieure de l’Aéronautique et de l’Espace,
Toulouse, France, 1980.

[5] ——, “Real-time obstacle avoidance for manipulators and mobile
robots,” The International Journal of Robotics Research, vol. 5, no. 1,
pp. 90–98, 1986.

[6] C. Connolly, J. Burns, and R. Weiss, “Path planning using Laplace’s
equation,” in Proceedings of the IEEE International Conference on
Robotics and Automation, May 1990, pp. 2102–2106.

[7] W. S. Newman and N. Hogan, “High speed robot control and obstacle
avoidance using dynamic potential functions,” in Proceedings of the
IEEE International Conference on Robotics and Automation, 1987,
pp. 14–24.

[8] E. Rimon and D. E. Koditschek, “Exact robot navigation using
artificial potential functions,” IEEE Trans. Robotics and Automation,
vol. 8, no. 5, pp. 501–518, 1992.

[9] Q. Li, M. D. Rosa, and D. Rus, “Distributed algorithms for guiding
navigation across a sensor network,” in MobiCom ’03: Proceedings
of the 9th annual international conference on Mobile computing and
networking. New York, NY, USA: ACM Press, 2003, pp. 313–325.

[10] L. C. A. Pimenta, G. A. S. Pereira, and R. C. Mesquita, “Fully
continuous vector fields for mobile robot navigation on sequences of
discrete triangular regions,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2007, pp. 1992–1997.

[11] K. F. Böhringer and H. Choset, Distributed Manipulation, 1st ed.
Kluwer Academic Publishers, 2000.

[12] K.-F. Bhringer, V. Bhatt, B. R. Donald, and K. Goldberg, “Algorithms
for sensorless manipulation using a vibrating surface,” Algorithmica,
vol. 26, no. 3, pp. 389–429, April 2000.

[13] A. Sudsang and L. Kavraki, “A geometric approach to designing a
programmable force field with a unique stable equilibrium for parts
in the plane,” in Proceedings of the IEEE Interational Conference on
Robotics and Automation, vol. 2, 2001, pp. 1079–1085.

[14] F. Lamiraux and L. E. Kavraki, “Positioning of symmetric and
non-symmetric parts using radial and constant fields: Computation
of all equilibrium configurations,” International Journal of Robotics
Research, vol. 20, no. 8, pp. 635–659, 2001.

[15] T. H. Vose, P. Umbanhowar, and K. M. Lynch, “Vibration-induced
frictional force fields on a rigid plate,” in Proceedings of the IEEE
International Conference on Robotics and Automation, April 2007,
pp. 660–667.

[16] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[17] B. Bouilly, T. Siméon, and R. Alami, “A numerical technique for plan-
ning motion strategies of a mobile robot in presence of uncertainty,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, vol. 2, Nagoya, Japan, May 1995, pp. 1327–1332.

[18] S. M. LaValle and S. A. Hutchinson, “An objective-based framework
for motion planning under sensing and control uncertainties,” Inter-
national Journal of Robotics Research, vol. 17, no. 1, pp. 19–42, Jan.
1998.

[19] T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson, “Planning
under time constraints in stochastic domains,” Artificial Intelligence,
vol. 76, no. 1-2, pp. 35–74, Jul. 1995.

[20] D. Ferguson and A. Stentz, “Focussed dynamic programming: Exten-
sive comparative results,” Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-04-13, Mar. 2004.

[21] R. Alterovitz, T. Siméon, and K. Goldberg, “The Stochastic Motion
Roadmap: A sampling framework for planning with Markov motion
uncertainty,” in Robotics: Science and Systems, 2007.

[22] A. Lazanas and J. Latombe, “Motion planning with uncertainty: A
landmark approach,” Artificial Intelligence, vol. 76, no. 1-2, pp. 285–
317, 1995.

