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INTRODUCTION 
Lung cancer is one of the most profound current public 
health challenges, with more than 150,000 lives lost to it 
each year in the United States alone [1]. A major 
challenge is early diagnosis, since life expectancy drops 
precipitously as the tumor grows. While small nodules 
(which may or may not be cancerous) are being 
identified with increasing frequency due to better 
imaging and new guidelines that dramatically increase 
the frequency of screening, many cannot currently be 
biopsied. Surgeons have a low diagnostic yield rate     
(< 52%) with nodules less than 1.5 cm in size using 
hand-held needles [2]. Furthermore, traditional 
percutaneous approaches risk lung collapse, which is a 
serious complication that can even be fatal to patients 
with various co-morbidities.  

Transoral targeting for biopsy and therapy delivery 
is a better approach, since the lung’s outer wall is not 
punctured, reducing the risk of lung collapse. While a 
few academic and commercial systems exist for this 
purpose (e.g. Medtronic’s superDimension system 
http://superdimension.com/), they are typically limited 
to nodules that occur in or near the bronchial tree. We 
recently described a robotic system designed to exit the 
bronchial tree and steer through the soft tissue of the 
lung [3]. The system, shown in Fig. 1, combines three 
steerable surgical devices: a tendon-driven redundant 
mechanism (the bronchoscope), a concentric tube robot 
[4], and a flexure-based bevel tip steerable needle [5]. 
Concentric tube robots have been used to augment the 
dexterity of rigid [6] and flexible endoscopes [7] in 
prior work, but this is the first time all three steering 
technologies have been combined into one system. The 
intended workflow for our system is (1) deploy the 
bronchoscope manually to the desired location in the 
bronchi, (2) use a puncture mechanism [3] to make a 
small opening in the bronchial wall, (3) deploy the 
concentric tube robot through it into the soft tissue of 
the lung, and (4) deploy the bevel tip needle and steer it 
to the desired target under closed loop control [8]. 

 
 In this paper we focus on improving step (3). Our 
objective is to provide a way for the concentric tube 
stage to use high curvatures, while minimizing tissue 
damage and deformation. We aim to achieve this via 
follow-the-leader deployment, in which the shaft of the 
device remains perfectly in the path traced out by the 
device’s tip as it advances through tissue. See [9] for a 
discussion of this as it relates to concentric tube robots. 
Achieving follow-the-leader deployment with our 
system is a challenge, because the long transmission 
lengths required for the tubes to pass through the 
bronchoscope are subject to substantial torsional windup 
as the curved tubes elastically interact. This can cause 
elastic instabilities and snap-through, in which the tubes 
suddenly snap from one configuration to another 
[10,11]. This makes a range of axial tube rotation angles 
inaccessible, unless tubes are only gradually curved, or 
are deployed such that their curved sections do not 
overlap when relative axial tube rotations are applied. 
 Non-annular tube cross sections provide a way to 
achieve follow-the-leader deployment with higher tube 
curvatures, or at currently inaccessible relative angles. 
Non-annular tubes prevent relative rotation of the tubes 
with respect to one another, avoiding the snapping 
behavior caused by elastic instabilities. This idea was 
first developed in a collaboration between the last 
author and Philips, Inc. Yet to date, it has only been 
described conceptually in the patent literature [12]. 
Thus, the contribution of this paper is the first physical 
realization of  non-annular concentric tubes.  

 
Fig. 1. Our transoral lung access system consists of three 
stages: a tendon-actuated bronchoscope, a concentric tube 
robot, and a steerable needle. The system was designed to 
target hard-to-reach nodules in the peripheral lung. 
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MATERIALS AND METHODS 
To create a set of non-annular tubes, we modified a set 
of annular tubes. We used an outer tube with an outside 
diameter (OD) of 1.60 mm and an inside diameter (ID) 
of 1.40 mm, and an inner tube with an OD of 1.16 mm 
and an ID of 0.99 mm. Mandrels made from nitinol wire 
(0.79 mm and 0.48 mm, respectively) were inserted into 
each tube, and a hot air gun was used to heat each tube 
to approximately 600° C. We then mechanically 
deformed the tube onto the mandrel with a set of pliers, 
yielding an elliptical cross section. We then precurved 
the tubes (curvature of 31.5 m-1, curved length ≈55 
mm). Fig. 2 shows the tubes placed concentrically. The 
elliptical cross sections prevent relative tube rotation.  

RESULTS 
The complete system introduced in the previous section, 
and described in [3], is illustrated in Fig. 3. The 
enhancement to the system that is the main result of this 
paper is the prototype shown in Fig. 2. The elliptical 
cross sections enable tubes to deploy with curvatures 
opposed to one another (see Fig. 2), in configurations 
that would be unstable for annular tubes [10,11]. For 
example, annular tubes of the same dimensions, 
precurvatures, and curved lengths, with transmission 
lengths long enough to pass through a bronchoscope 
(e.g. 735 mm and 835 mm), would wind up torsionally 
and be unable to achieve this configuration. In fact, the 

maximum overlapped arc length of the precurved 
portions of these annular tubes for which stable opposed 
curvatures could be maintained would be 0.9 mm [10]. 
Furthermore, when the precurved sections of these 
annular tubes are fully overlapped and extended from 
the bronchoscope, the maximum stable rotation angle of 
the inner tube relative to the outer is 53°, and this 
requires a tube base angle of approximately 3083°, more 
than 8.5 revolutions! In contrast, the use of non-annular 
tubes enables higher curvatures and previously 
inaccessible relative tube angles (e.g. the 180° case 
shown in Fig. 2) to be employed.  

CONCLUSION 
While non-annular tube cross sections would not be 
useful in contexts where the concentric tube robot is 
intended to act as a manipulator (see [4]), they can be a 
good option when one desires the concentric tube robot 
to act like a steerable needle. By locking the relative 
axial rotation of the tubes, elastic instability is 
prevented, and configurations inaccessible to annular 
tubes become possible. This is potentially useful in any 
procedure where the robot acts like a steerable needle. 
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Fig. 2.  Our prototype concentric tube robot with elliptical 
cross sections. This design can achieve configurations that 
would be unstable for annular tubes, facilitating follow-the-
leader deployment with higher curvatures. 

 
Fig. 3. (a) Our complete system, in which the concentric 
tube robot and steerable needle pass through the 
bronchoscope port. (b) Photographs of phantom targeting 
experiments with the system, in which magnetic tracking 
feedback was used to steer the needle to targets [3]. 
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