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Abstract We present demonstration-guided motion planning (DGMP), a new frame-
work for planning motions for personal robots to perform household tasks. DGMP
combines the strengths of sampling-based motion planning and robot learning from
demonstrations to generate plans that (1) avoid novel obstacles in cluttered envi-
ronments, and (2) learn and maintain critical aspects of the motion required to suc-
cessfully accomplish a task. Sampling-based motion planning methods are highly
effective at computing paths from start to goal configurations that avoid obstacles,
but task constraints (e.g. a glass of water must be held upright to avoid a spill)
must be explicitly enumerated and programmed. Instead, we use a set of expert
demonstrations and automatically extract time-dependent task constraints by learn-
ing low variance aspects of the demonstrations, which are correlated with the task
constraints. We then introduce multi-component rapidly-exploring roadmaps (MC-
RRM), a sampling-based method that incrementally computes a motion plan that
avoids obstacles and optimizes a learned cost metric. We demonstrate the effec-
tiveness of DGMP using the Aldebaran Nao robot performing household tasks in a
cluttered environment, including moving a spoon full of sugar from a bowl to a cup
and cleaning the surface of a table.

1 Introduction

Over 10 million people need assistance with activities of daily living (ADLs) such
as cooking, cleaning, and dressing in the United States. And this number is expected
to grow dramatically worldwide as the number of elderly individuals continues to
increase rapidly. Providing assistance to these individuals for ADLs is currently
very labor intensive and often requires moving an individual from their home to an
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Fig. 1 We consider the household task of using a spoon to transfer sugar from a bowl to a cup on a
table. Using standard motion planning algorithms without explicitly programming task constraints
will fail since the spoon will not be kept level, causing the sugar to be spilled on the table (left).
Methods based on learning from demonstrations are often unable to compute collision-free trajec-
tories when novel obstacles are introduced in new locations not considered in the demonstrations
(middle). Our method effectively combines motion planning with learning from demonstrations to
avoid obstacles and keep the spoon level to successfully transfer the sugar (right).

impersonal institution, which comes at a significant cost to society. Recently devel-
oped personal robots have the potential to assist individuals with a variety of ADLs.
However, the algorithms to control these robots for autonomous, safe assistance
with household tasks is still a work in progress in the robotics research community.

A key challenge is the development of algorithms that enable personal robots to
plan motions in unstructured environments to accomplish tasks currently performed
by humans. These tasks often involve significant constraints on motion that humans
are aware of from context and intuition. For example, when carrying a plate of food
from the kitchen to the dining room, a person knows that tilting the plate sideways,
while feasible, is undesirable. The robot must be aware of such task constraints and
at the same time avoid unforeseen obstacles in unstructured environments.

We present a new approach that unifies ideas from two fields: robot motion plan-
ning and robot learning from demonstrations. The motion planning community has
developed highly successful sampling-based methods that efficiently compute fea-
sible plans that avoid obstacles. However, motion planning methods typically do
not consider any task constraints unless explicitly programmed. As shown in Fig.
1, direct application of standard motion planning algorithms to a robot transferring
a spoonful of sugar from a bowl to a cup will result in the robot spilling the sugar
unless the robot is explicitly programmed to keep the spoon level. While such task
constraints can be innocuous to program individually, requiring expert program-
mers to anticipate and program all such constraints for robots operating in human
environments would be prohibitive. In contrast, the learning from demonstration
community has developed highly effective approaches for extracting from multiple
demonstrations the key motions required to accomplish a task. Such methods can
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explicitly or implicitly learn task constraints, such as the fact that spoons full of
sugar should be kept level to avoid spillage. However, methods based on learning
from demonstrations often falter when the robot must accomplish the task in a new,
cluttered environment where unforeseen obstacles compel the robot to move out-
side the range of motions included in the input demonstrations. Our new approach,
Demonstration-Guided Motion Planning (DGMP), combines the strengths of meth-
ods in motion planning and in learning from demonstration to both (1) avoid novel
obstacles in cluttered environments, and (2) learn and maintain critical aspects of
the motion required to successfully accomplish a task.

To teach the robot the motions necessary to assist in a household task, we use
kinesthetic demonstrations; the robot’s joints are placed in a passive mode and the
demonstrator moves the robot’s arms and torso through each step of the task. Kines-
thetic demonstrations are ideally suited for teaching household assistance tasks.
They do not require the human expert (e.g. an occupational therapist) to learn com-
plicated computer/robot programming. Instead, they rely only on physical, real-
world demonstrations that are an intuitive and user-friendly way for human experts
to teach robots to perform new tasks.

The emphasis of DGMP is not on learning high-level task decompositions or
low-level controls from the demonstrations, but rather to learn the constraints on the
robot’s motion that are required to accomplish a repeated task. From a set of demon-
strations, we apply statistical analysis to learn low and high variance components of
the motion. Low variance regions correspond to implicit constraints that should be
satisfied when the motion plan is executed. We use these variances to define a cost
metric over the configuration space of the robot.

After the learning phase, DGMP uses a new motion planning algorithm, a multi-
component rapidly-exploring roadmap (MC-RRM). The planner guarantees obsta-
cle avoidance and incrementally improves the plan, guaranteeing convergence to
the optimal feasible solution for the cost metric as computation time is allowed to
increase.

We demonstrate the effectiveness of DGMP using the Aldebaran Nao robot per-
forming household tasks in a cluttered environment, including transferring sugar
from a bowl to a cup using a spoon and wiping a table. Our results demonstrate
that unlike using motion planning or learning from demonstration methods in iso-
lation, our unified approach converges to an optimal solution and offers a signifi-
cantly higher success rate in accomplishing tasks that involve both learning of task
constraints as well as obstacle avoidance.

2 Related Work

Our framework bridges robot motion planning with robot learning from demon-
strations. Learning from demonstration methods have been highly successful in
enabling robots to learn task constraints and imitate task motions [6, 4]. Motion
planning methods have been effective at computing feasible motions from a start
configuration to a goal configuration while avoiding obstacles [10, 16].
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Demonstrations can provide examples of the motion required to accomplish a
task, and these demonstrations can be used to computationally learn a control pol-
icy that will enable a robot to autonomously execute the task motion subject to
real-world noise and disturbances. Inverse reinforcement learning has been used to
estimate the unknown objective function of a control policy from demonstrations in
environments with complex dynamics. This approach, sometimes called apprentice-
ship learning, has been applied to learn control policies for car driving [2], helicopter
acrobatics [12], and robotic knot tying [24]. Another approach models the variations
across demonstrated motion trajectories using a Gaussian Mixture Model (GMM)
and then uses Gaussian Mixture Regression (GMR) to estimate the ideal trajectory
and a corresponding controller [7]. Our approach builds on the GMM/GMR work-
flow from Calinon et al. for extracting local trajectories expressed in coordinate sys-
tems relative to objects in the environment [7]. The GMM/GMR approach has been
applied to manipulation tasks such as moving chess pieces or feeding a doll and is
robust to movement of obstacles included in the demonstrations [8]. However, these
methods lack the ability to avoid novel obstacles that were not explicitly consid-
ered during the demonstrations, which is critical for motion planning in household
environments.

Recent methods have used learning from demonstration methods to consider pre-
viously unseen obstacles, but existing methods are limited either to low dimension
spaces, place limitations on the locations of obstacles, or do not allow for time-
dependent task-space constraints. Prior work has investigated using global search
methods such as A* or D* where path costs are learned from demonstrations. This
approach has been successfully applied to navigating cars in a parking lot [1], ma-
neuvering off-road vehicles in complex terrain [23], and generating natural mo-
tions for animated characters [17]. However, these methods do not consider time-
dependent constraints and they discretize the state space, which does not scale well
to higher degree of freedom systems like some personal robots. Another approach
models demonstration trajectories as fluid currents in the task space and performs
fluid dynamic simulation to derive a control policy [19]. Fluid simulation considers
obstacles, but performance is unclear if obstacles pass through the demonstration
trajectories.

In contrast to robot learning methods that have focused on extracting meaning-
ful data from demonstrations, motion planning focuses on computing feasible plans
that avoid obstacles. In particular, sampling based methods have been very success-
ful for a wide variety of problems involving high-DOF robots [16, 10]. Prior work
has investigated the use of RRTs combined with learned metrics to generate paths,
but these methods are guaranteed to converge to a suboptimal solution [15]. One
approach extends RRTs to sample only inside a provided number of standard devia-
tions of a mean demonstrated trajectory, but may not find a feasible solution even if
one exists [11]. RRTs have also been used in conjunction with task-based symbolic
constraints [14]. Transition-based RRT (T-RRT) [13] is a sampling-based motion
planner over cost maps that biases expansion of the tree to low cost regions of the
configuration space. T-RRT can be used to generate natural motions by using a pre-
defined human robot interaction cost metric [18]. GradienT-RRT extends T-RRT to
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use the gradients of the cost function to locally optimize the trajectory and facilitate
finding solutions through narrow chasms [5]. GradienT-RRT can be used in conjunc-
tion with GMM to generate more natural motions and can also be used to constrain
robot motion using explicit task space constraints. However, this prior work has not
considered automatic learning of time-dependent task constraints from demonstra-
tions and using that learned information to guide planning. Learning-based methods
can also incorporate consideration of obstacles using potential fields [20], but this
approach is sensitive to local minima.

In contrast to prior work, DGMP combines learning from demonstration with a
sampling-based motion planner that incrementally refines the solution. Our DGMP
framework learns task-space constraints and expresses them in a cost map, considers
time-dependent criteria by aligning the robot’s trajectory to demonstrations, avoids
novel obstacles not included in demonstrations, works for high DOF robots, and
generates an optimal solution as computation time is allowed to increase.

3 The Demonstration-Guided Motion Planning Framework

Our Demonstration-Guided Motion Planning (DGMP) framework consists of two
major phases: learning and execution. The learning phase only needs to be per-
formed once for a particular task and can then be applied to multiple task executions
in different environments. In the DGMP learning phase, human experts perform sev-
eral demonstrations of the task, which are encoded into a learned cost metric. In the
DGMP execution phase, the robot performs the task in a new environment using the
derived cost metric for guidance. An overview of the approach is shown in Fig. 2.

The DGMP learning phase requires that human experts control the robot to per-
form N demonstrations of the task. Although the framework allows demonstrations
to be provided in any manner, our implementation assumes that we use kines-
thetic demonstrations and that the robot includes position-controlled joints. For each
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Fig. 2 The DGMP framework consists of a learning phase that is performed once per task and an
execution phase that is performed each time the task is executed in a new environment.
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demonstration, the robot’s joints are placed in a passive mode and a human expert
manually moves the robot’s limbs to perform the task. We assume the robot has
encoders at every joint, allowing the robot to “sense” its own motion and record
joint angles as a function of time for each demonstration. The data obtained from
demonstration i will be a sequence of joint angles Xθ

i as well as other sensor input
Pi of the environment, such as images (from camera sensors) and point cloud data
(from laser range finders or stereo image reconstructions).

The DGMP learning phase begins by aligning the demonstrations and transform-
ing the demonstration data into a set of motion features expressed as a function of
time. We consider motion features defined by the angles of the robot’s joints as well
as the position of points on the robot (e.g. the end effector and a grasped object)
relative to landmarks in the environment (e.g. the sugar bowl or cup in Fig. 1). For
a given time, the mean {x̂(k)} and covariance matrix {Σ̂ (k)} of each motion feature
k across multiple demonstrations reflect the task constraints intended by the human
demonstrator. The lower the variance of a motion feature across demonstrations at a
given time, the higher the consistency of the demonstrations with respect to that mo-
tion feature. Higher consistency implies the mean value of a motion feature should
be followed more closely when performing the task. In contrast, high variance mo-
tion features likely do not need to be closely reproduced during execution for the
robot to succeed in accomplishing the task.

In the DGMP execution phase, the robot senses its environment to (1) deter-
mine the landmarks’ correspondences in the current environment, and (2) collect
sufficient data to perform collision detection for motion planning. Combining the
landmark correspondences with the means {x̂(k)} and covariance matrices {Σ̂ (k)} of
all the motion features, we define our cost metric H, which estimates the degree to
which a a candidate plan matches the intent of the expert demonstrator. We then ex-
ecute our new motion planning algorithm, MC-RRM, to search for a collision-free
robot motion that minimizes the cost metric.

3.1 DGMP Learning Phase

The DGMP learning phase takes as input N demonstrations of the task. Dur-
ing each demonstration i, we record a time sequence of the robot’s configuration
Xθ

i = {xθ
i,t}

Ti
t=1, where Ti is the length of the demonstration and xθ

i,t is the vector
joint angles at time t. We also record sensor input {Pi, i = 1 . . .N} of the environ-
ment, such as images and point cloud data. From the sensed data, we require that
M landmarks be identified, either manually or automatically using computer vision
algorithms, that are present across all demonstrations and will likely be present in
the execution environment. The landmarks serve as correspondence points in the
environment across the demonstrations, and they may or may not be directly related
to the task. In our implementation, we also explicitly define the robot’s torso to be
a landmark. For each demonstration, we denote the poses (orientations and posi-
tions) of the landmarks by {(R ji,o ji), j = 1 . . .M, i = 1 . . .N}. For example, in the
task shown in Fig. 1 a landmark was sensed on the sugar bowl.
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3.1.1 Extracting Motion Features from Demonstrations

We expect that the key task constraints for a problem are satisfied across all the
demonstrations. To automatically extract these task constraints, we consider a set of
motion features that are designed to help identify aspects of the robot motions that
are consistent across demonstrations but that may be hidden in the raw demonstra-
tion data. We consider configuration motion features and landmark-based motion
features. In a configuration motion feature, we consider the robot’s joint angles
at a particular time. For a personal robot with many redundant degrees of free-
dom, this data helps in learning “natural” motions that are lost when only consid-
ering end effector motions. We denote the configuration motion feature trajectory
as X (0)

i = Xθ
i . In a landmark-based motion feature, we consider the location of one

or more points attached to moving parts of the robot (e.g. end effector, manipulator
arm, and grasped objects) relative to sensed landmarks in the environment (e.g. a
cup or bowl). For the vector of relevant points attached to moving parts of the robot,
we define a “local” trajectory of that vector as the coordinates of the relevant points
with respect to each landmark. The landmarks essentially serve as local coordinate
systems for defining the trajectory of points on the robot. Landmark-based motion
features can be used to find important consistencies across demonstrations, such as
the position of the end effector relative to a relevant object for the task. We com-
pute the end effector trajectory in the local coordinate system of each landmark,
x( j)

i,t = R ji(x
(1)
i,t − o ji), i = 1 . . .N, j = 1 . . .M, where x(1)i,t is the end effector position

relative to the robot’s torso (i.e. landmark #1). We represent a local trajectory as
X ( j)

i = {x( j)
i,t }

Ti
t=1. Combining the configuration and landmark-based motion features,

we have L = M+1 motion feature trajectories represented as XE
i = {X ( j)

i }L
j=0.

3.1.2 Computing the Cost Metric using Statistical Modeling
Our objective is to identify low variance and high variance aspects of the motion
feature trajectories across demonstrations in order to create a cost metric that will
guide a motion planner to ensure that task constraints are satisfied as best as possible
given the locations of obstacles in the execution environments.

The motion feature trajectories are time dependent signals and are obtained from
different demonstrations with different time scales (e.g. due to varying demonstra-
tion speed). To correctly encode the task constraints across different demonstrations,
the trajectories XE

i must be temporally aligned. That is, for each time step t, the set
of motion features for the i’th demonstration XE

i,t = {x
( j)
i,t }

M+1
j=0 is assigned with an

aligned time step gi(t). Therefore, the aligned trajectory of XE
i is represented as

XA
i,t = {XE

i,t ′ |gi(t ′) = t, t ′ = 1 . . .Ti, i = 1 . . .M}, t = 1 . . .T . We use linear interpo-
lation resampling to ensure one observation per time slot. To compute gi, we use
dynamic time warping (DTW), which has been used in speech recognition [22] and
robot learning [9, 12]. DTW uses dynamic programming to compute the optimal
time alignment based on a distance function between points. We initially use a Eu-
clidean distance function and then iteratively refine our solution using the output of
the statistical modeling as discussed below.



8 Gu Ye and Ron Alterovitz

Fig. 3 The mean and covariance of the two motion feature trajectories, the 6D joint angle trajec-
tories (left) and 3D end effector trajectory (right), extracted for the table cleaning task described
in Sec. 4. The red line in the right plot, which corresponds to the vertical coordinate of the end
effector trajectory, has low variance in the middle section; this indicates the end effector with the
paper towel should be kept on the table surface.

Given the time aligned motion feature trajectories, our next objective is statisti-
cal modeling: to estimate the expected mean and covariance of the motion features
across demonstrations. For a given time t, each motion feature has N observations,
one from each demonstration. For notation simplification, let x(k)i,t denote the motion
feature k from demonstration i at time t after temporal alignment. We calculate the
time dependent mean x̂ and covariance matrix Σ̂ for each time slice:

x̂(k)t =
1
N

N

∑
i=1

x(k)i,t , Σ̂
(k)
t =

1
N−1

N

∑
i=1

(x(k)i,t − x̂(k)t )(x(k)i,t − x̂(k)t )T .

Fig. 3 shows the statistical modeling result for two motion feature trajectories ex-
tracted for the table cleaning task described in Sec. 4.

We use the results of the statistical modeling to iteratively improve the temporal
alignment. Rather than treating each DOF of the motion feature trajectories as hav-
ing equal weight, we instead consider the similarities identified by the covariance
computation. We generate weights for each DOF using the inverse of the covariance
matrix, which results in similar motion features having a shorter distance in DTW.
We re-execute DTW with the revised distance metric, re-evaluate the means and
covariances, and loop until the result converges.

In the execution phase described below, we will search for an optimal trajectory
in the robot’s joint space that follows the modeled constraints, which we represent
using a cost metric. The cost metric function depends on the landmark poses in
the execution environment, where Ri and oi define the transformation of the local
coordinate system of the i’th landmark. With the input landmark poses provided
during task execution, the cost of a given joint configuration θ at time t can be
computed by the cost metric H as:

H(θ , t) = (θ − θ̂t)
TW θ

t (θ − θ̂t)+
M

∑
i=1

[(K(θ)− x̂′(i)t )TW x(i)
t (K(θ)− x̂′(i)t )],

where
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θ̂ = x̂(M+1), Σ̂ θ = Σ̂
(M+1),W θ

t = (Σ̂ θ
t )
−1, x̂′(i)t = Rix̂

(i)
t +oi,W

x(i)
t = (RΣ̂

x(i)
t RT )−1

and K is the forward kinematics function mapping the joint configuration to end
effector position. The time-dependent cost metric function H is the output of the
learning phase.

3.2 DGMP Execution Phase

We use the results of the learning phase to enable the robot to execute the task in
new, cluttered environments. The robot must sense its environment to determine the
locations of obstacles (e.g. the volume of the workspace that is not free) as well as
sense landmarks and establish correspondences to the landmarks used in learning.
To compute a motion plan that avoids obstacles while satisfying task constraints,
DGMP takes advantage of two useful pieces of information. First, with knowledge
of the landmark locations, the robot can compute the learned cost metric defined in
the subsection above for any path. Second, it can compute a guiding path defined
by the mean of the motion feature trajectories, which is equivalent to following the
valley of the cost metric. This guiding path is not guaranteed to be collision free.

To harness these pieces of information and efficiently solve the motion plan-
ning problem, we introduce the multi-component rapidly-exploring roadmap (MC-
RRM), a sampling based motion planning method that computes a motion plan that
minimizes costs over a time-dependent cost map and uses a guiding path to de-
crease computation time. The guiding path is assumed to follow a valley of the cost
map. This method is ideally suited for DGMP by explicitly taking advantage of the
information available from the motion feature trajectory means and variances.

MC-RRM combines the benefits of PRMs and RRTs for motion planning prob-
lems over time-dependent cost maps in which a guiding path is provided. A tradi-
tional PRM with uniform sampling could solve this problem to optimality as the
number of samples increases, but this approach is prohibitively slow for high di-
mensional configuration spaces in which most of the configuration space is not rel-
evant for the task and due to challenges in temporally aligning a PRM plan to the
demonstrations for computing the metric. On the other hand, RRT provides a fast
incremental sampling-based algorithm for high dimensional spaces but is guaran-
teed to return a suboptimal solution [15]. MC-RRM builds on ideas from RRG and
RRT* [15] and uses the guiding path to incrementally build a roadmap that enables
finding an optimal solution as computation time is allowed to increase.

3.2.1 MC-RRM
MC-RRM takes as input a configuration space (C-space), a cost metric over the
C-space, a set of obstacles in the C-space, a collision detector, and a guiding path
x̃ = {x̃1 . . . x̃T} that traverses a local valley in the cost metric from the initial state to
a goal state. The cost metric is defined by He(x1,x2)> 0 for an edge between a pair
of arbitrary points x1 and x2 in C-space. MC-RRM returns a collision free trajectory
such that the sum of the edge costs over the path is minimized.
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As shown in Sec. 3.2.2 below, we can compute the guiding path directly based
on the cost metric. With the newly observed obstacles in the execution environment,
the ideal trajectory defined by this guiding path may not be feasible because parts of
the trajectory collide with the obstacles. When the obstacles intercept the trajectory
sparsely, the collision-free part of the ideal trajectory is still likely to be the part of
the optimal path. Hence, the key challenge is to find optimal alternative pathways
for the in-collision sections of the guiding path.

In MC-RRM, the points along the guiding path are regarded as guide points,
whether in collision or not. At initialization of the MC-RRM, the collision-free
guide points are added as nodes to a global graph (i.e. the roadmap) and adjacent
points are connected by an edge if the edge is collision free. Due to obstacles, the
global graph may contain multiple disconnected components. Fig. 4 shows an ex-
ample with two disconnected components. We denoted these components as Ci,
which are represented as subgraphs of the global graph. For each Ci, a node set is
maintained. The node set is initialized with the guide points from the corresponding
disconnected component. In the sampling process, we sample new nodes in a man-
ner similar to RRT for each of the Ci: a random sample is created; nearest neighbors
in each Ci are selected; and each component is extended toward the random sample
up to a distance dmax where a new node is added. The newly added nodes are con-
nected by edges to the corresponding Ci as well as to the global graph. Every time
a new node is added to the global graph, it is connected to all nearby nodes within
some distance (as in RRG [15]), which could belong to any Ci. Until the allowed
computation is reached, we periodically run Dijkstra’s shortest path algorithm to
compute the path with lowest cost.

We note that each Ci only maintains a node set and does not need to store edges.
Edges are only maintained in the global graph. As the sampling progresses, edges in
the global graph may connect nodes in one component with nodes in another discon-
nected component. We maintain the components separately in order to maintain the
expansion bias from each component that was originally separated by an obstacle.
This ensures that gaps in the guiding path introduced by obstacles are incrementally
explored from multiple directions.

In addition to growing the roadmap from collision-free nodes along the guiding
path, we also use a heuristic sampling bias. Rather than sampling uniformly in the
robot’s configuration space, we consider all the guide points with their covariance
matrices as a mixture of Gaussians. We sample configurations from this distribution.

3.2.2 DGMP execution using MC-RRM
MC-RRM requires both a cost metric and a guiding path. For the cost metric, we
use H defined in Sec. 3.1.2. For the guiding path, we ignore obstacles and compute
the robot configuration (i.e. the joint angles) that minimizes the cost metric at each t,
t = 1 . . .T . To ensure satisfaction of the robot’s kinematic constraints, we minimize
H at each t using Lagrange optimization as in Calinon et al. [9]. For the sampling
based motion planning algorithm, we compute the edge cost using our cost metric:
He(x1,x2)=

∫ x2
x1

H(x,k(x))dx where the integral is taken along the line segment from
x1 to x2 in C-space and k is a time alignment function that estimates the correspond-
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Fig. 4 MC-RRM in a 2D
C-space where the guiding
path intersects an obstacle
(green polygon). (a) The
guiding path is added to
the graph, resulting in two
disconnected components
shown in blue. (b,c) Samples
are drawn from a GMM
(yellow), both components
are extended, and nearest
nodes are connected (purple),
forming a graph. (d) Lowest
cost path (green) computed by
Dijkstra’s algorithm.

(a) (b)

(c) (d)

ing time index of x in the original demonstration. In our current implementation, k
returns the time index of the nearest point on the guiding path. This may introduce
problems when the guiding path involves loops, which will be addressed in future
work. To efficiently discretize the line integral for He(x1,x2), we approximate the
function as He(x1,x2) = ∑

t2
t=t1+1 H( (x2−x1)t

t2−t1
+x1, t), where t1 = k(x1), t2 = k(x2). For

the edge from x1 to x2, we assume the transition is performed in constant speed and
interpolate configurations along the edge.

4 Results

We applied DGMP to the Aldebaran Nao robot [3] to perform two household tasks.
The first task was to transfer sugar from a bowl to a cup in the presence of obstacles
as shown in Fig. 6 and 7. The second task was to clean the surface of a table in the
presence of obstacles as shown in Fig. 9.

The Aldebaran Nao includes 26 total degrees of freedom, including 5 DOF in
each arm, 1 DOF for bending at the hip, 1 DOF for opening and closing each 3-
finger gripper, and the remaining DOFs for the legs and neck. In our experiments,
we used 6 DOF for each task: 5 DOF in the right arm and 1 DOF at the hip. We
implemented DGMP using the Python programming language. All computation was
performed on a 2.4 GHz Intel Xeon e5620 PC running 64-bit Linux.

Fig. 5 Minimal path cost vs.
number of samples for one of
the test cases. With traditional
PRM, the minimal cost path
is larger than 7× 106 with
100,000 samples.
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In our first experiment, a sugar transfer task, the goal was to evaluate the ability
of DGMP to (1) learn task-specific constraints that are critical to the success of the
task, and (2) avoid novel obstacles in the environment. The robot was seated at a
table with a sugar bowl and a cup, and, in some cases, other items. The task was to
scoop some sugar using a spoon and transfer the sugar to the cup without bumping
the bowl, the cup, or any other items that may be on the table. Other than the demon-
strations, we did not provide the method any explicit task-specific information; e.g.
we never explicitly constrained the spoon to be level when moving sugar from the
bowl to the cup to prevent spillage. To successfully accomplish this task, the robot
needed to (1) automatically learn that the spoon should be kept level as it moves
from the bowl to the cup on order to prevent spilling the sugar, and (2) successfully
avoid obstacles on the table when performing the task.

We conducted 7 kinesthetic demonstrations. In each demonstration, only the
sugar bowl and cup were on the table. We varied the placement of the sugar bowl
randomly within a 5 inch radius on the table across the demonstrations. We used
3 environment landmarks which were located on the chair, the cup, and the bowl.
Each end-effector trajectory contained the x,y,z coordinates of two points attached
to the robot (the end effector and the tip of the spoon), so each end-effector vector
is 6 dimensional. Two points on the robot were chosen such that the appropriate tilt
and level of the spoon could be learned (via the covariance matrices) for different
stages of the task.

To evaluate performance of our method, we created 27 test cases. In each test
case, the location of the sugar bowl and of the obstacle were randomly determined.
The sugar bowl’s location varied within a 4 inch range and the obstacle was placed
in a 2.5 inch range. We provided the shape and locations of the bowl and obstacle (as

Fig. 6 Execution of DGMP for the sugar transfer task. The robot successfully keeps the spoon
level while avoiding the jar, a novel obstacle not included in the demonstrations.
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Fig. 7 Execution of DGMP for the sugar transfer task. The robot successfully keeps the spoon
level while avoiding the canister, a novel obstacle not included in the demonstrations.

cup cup

bowl

bowl

jar

jar

Fig. 8 A top-down view of the workspace for two test cases. The demonstration mean (red) and the
MC-RRM plan (green) for the spoon motion, where two points near the spoon tip are tracked. MC-
RRM samples projected into the workspace are shown as blue dots. Depending on the placement
of the jar, the robot may detour above the jar (left) or to the side of the jar (right) in order to keep
the spoon level while still satisfying the kinematic constraints the robot.

would be extracted from a vision system) to the motion planner and then computed
a plan for each test case. We then executed each plan on the Nao robot in the exper-
imental setup. After completing the demonstrations, the learning phase required 42
seconds of computation time. In our unoptimized implementation, computing a mo-
tion plan then required 1.5 seconds when no obstacle was present and an average of
410 seconds when an obstacle was present. We show the convergence of the method
in Fig. 5 and note that the cost metric of the path obtained by MC-RRM was orders
of magnitude lower than for standard PRM at equivalent computation times.

A test case was considered successful if the robot (1) scoops sugar from the bowl
and transfers it to the cup without spilling on the table or obstacle, and (2) does
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Fig. 9 Execution of DGMP for the table cleaning task. The robot successfully learned to keep the
paper towel on the table while avoiding the bowl, which was not included in any of the demonstra-
tions.

not contact the obstacle, bowl, or cup. We considered a test case to be feasible if it
was possible for the robot to successfully accomplish the task given its kinematic
constraints. Of the 27 test cases, 3 were not feasible due to the obstacles being too
close to the robot’s rest pose.

DGMP succeeded in 22 of the test cases, resulting in a success rate of 92% of
the 24 feasible test cases. In the two failure cases, the obstacle was very close to
the robot, which results in a narrow passage in the robot’s configuration space and
the MC-RRM could not find a solution within 100,000 samples. For the same test
cases, we also applied a pure learning-based approach in which we executed the
mean time-aligned trajectory. Due to obstacle collisions, this approach resulted in
only 3 successes, a success rate of 13% of the feasible test cases. RRT resulted in
zero successes because it always spills the sugar due to lack of knowledge of task
constraints.

We also tested our method on a table cleaning task. As in the sugar transfer task,
the Nao robot was seated at a table. The objective was to wipe the table clean using
a grasped clump of paper towel. Six demonstrations were recorded of the robot
wiping the table in an S-shaped curve without any obstacles. During task execution,
a new obstacle was put on the table. To be successful, the robot needed to learn that
the paper towel needed to be kept on the surface of the table and avoid obstacles. In
all our task executions, DGMP was able to find a detouring path and successfully
complete the wiping task, as shown in the example in Fig. 9.

Videos of a Nao robot performing these tasks using DGMP are available at:
http://robotics.cs.unc.edu/DGMP
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5 Conclusion and Future Work

We presented demonstration-guided motion planning (DGMP), a new framework
for planning motions for personal robots to perform household tasks. DGMP com-
bines the strengths of sampling-based motion planning and robot learning from
demonstrations to generate plans that (1) avoid novel obstacles in cluttered environ-
ments, and (2) learn and maintain critical aspects of the motion required to success-
fully accomplish a task. Sampling-based motion planning methods are highly effec-
tive at computing paths from start to goal configurations that avoid obstacles, but
task constraints must be explicitly enumerated and programmed. Instead, we used a
set of expert demonstrations and automatically extract task constraints by learning
low variance aspects of the demonstrations. We then introduced multi-component
rapidly-exploring roadmaps (MC-RRM), a sampling-based method that incremen-
tally computes a motion plan that avoids obstacles and optimizes the learned cost
metric. We demonstrated the effectiveness of DGMP using the Aldebaran Nao robot
performing household tasks in a cluttered environment, including moving a spoon
full of sugar from a bowl to a cup and cleaning the surface of a table. By effec-
tively combining motion planning with learning from demonstration, our robot us-
ing DGMP accomplished its task successfully in over 90% of its test cases for which
a solution was feasible.

In the future work, we plan to extend our method to handle more general tasks
with loops and pauses. This could be done by improving the time alignment function
in the edge cost metric computation. We also plan to consider real-time sensing
(including scene and object recognition) and moving obstacles, which may involve
integrating perception-guided motion planning [21] with DGMP. We hope to build
on DGMP to enable personal robots to assist humans with a larger class of tasks.
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